Biofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycin

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHashem Y.A.
dc.contributor.authorAmin H.M.
dc.contributor.authorEssam T.M.
dc.contributor.authorYassin A.S.
dc.contributor.authorAziz R.K.
dc.contributor.otherDepartment of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherBritish University in Egypt (BUE)
dc.contributor.otherShorouk City
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.other6 October City
dc.contributor.otherEgypt; Department of Microbiology and Immunology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:11Z
dc.date.available2020-01-09T20:41:11Z
dc.date.issued2017
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractEnterococci are nosocomial pathogens that can form biofilms, which contribute to their virulence and antibiotic resistance. Although many genes involved in biofilm formation have been defined, their distribution among enterococci has not been comprehensively studied on a genome scale, and their diagnostic ability to predict biofilm phenotypes is not fully established. Here, we assessed the biofilm-forming ability of 90 enterococcal clinical isolates. Major patterns of virulence gene distribution in enterococcal genomes were identified, and the differentiating virulence genes were screened by polymerase chain reaction (PCR) in 31 of the clinical isolates. We found that detection of gelE in Enterococcus faecalis is not sufficient to predict gelatinase activity unless fsrAB, or fsrB alone, is PCR-positive (P = 0.0026 and 0.0012, respectively). We also found that agg is significantly enriched in isolates with medium and strong biofilm formation ability (P = 0.0026). Additionally, vancomycin, applied at sub minimal inhibitory concentrations, inhibited biofilm in four out of five strong biofilm-forming isolates. In conclusion, we suggest using agg and fsrB genes, together with the previously established gelE, for better prediction of biofilm strength and gelatinase activity, respectively. Future studies should explore the mechanism of biofilm inhibition by vancomycin and its possible use for antivirulence therapy. � 2017 The Author(s).en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100200805&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1038/s41598-017-05901-0
dc.identifier.doiPubMed ID 28720810
dc.identifier.issn20452322
dc.identifier.otherhttps://doi.org/10.1038/s41598-017-05901-0
dc.identifier.otherPubMed ID 28720810
dc.identifier.urihttps://t.ly/rxxxR
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofseriesScientific Reports
dc.relation.ispartofseries7
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectantiinfective agenten_US
dc.subjectvancomycinen_US
dc.subjectvirulence factoren_US
dc.subjectbacterial geneen_US
dc.subjectbiofilmen_US
dc.subjectdrug effecten_US
dc.subjectEgypten_US
dc.subjectEnterococcusen_US
dc.subjectgenetic association studyen_US
dc.subjectgeneticsen_US
dc.subjectgenotypeen_US
dc.subjectGram positive infectionen_US
dc.subjectgrowth, development and agingen_US
dc.subjecthospitalen_US
dc.subjecthumanen_US
dc.subjectisolation and purificationen_US
dc.subjectmicrobiologyen_US
dc.subjectphysiologyen_US
dc.subjectpolymerase chain reactionen_US
dc.subjectAnti-Bacterial Agentsen_US
dc.subjectBiofilmsen_US
dc.subjectEgypten_US
dc.subjectEnterococcusen_US
dc.subjectGenes, Bacterialen_US
dc.subjectGenetic Association Studiesen_US
dc.subjectGenotypeen_US
dc.subjectGram-Positive Bacterial Infectionsen_US
dc.subjectHospitalsen_US
dc.subjectHumansen_US
dc.subjectPolymerase Chain Reactionen_US
dc.subjectVancomycinen_US
dc.subjectVirulence Factorsen_US
dc.titleBiofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycinen_US
dc.typeArticleen_US
dcterms.isReferencedByRichards, M.J., Edwards, J.R., Culver, D.H., Gaynes, R.P., Nosocomial infections in combined medical-surgical intensive care units in the United States (2000) Infect. Control Hosp. Epidemiol., 21, pp. 510-515; Costerton, J.W., Cystic fibrosis pathogenesis and the role of biofilms in persistent infection (2001) Trends Microbiol., 9, pp. 50-52; Dautle, M.P., Wilkinson, T.R., Gauderer, M.W., Isolation and identification of biofilm microorganisms from silicone gastrostomy devices (2003) J. Pediatr. Surg., 38, pp. 216-220; Mohamed, J.A., Huang, W., Nallapareddy, S.R., Teng, F., Murray, B.E., Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis (2004) Infect. Immun., 72, pp. 3658-3663; Lewis, K., Riddle of biofilm resistance (2001) Antimicrob. Agents Chemother., 45, pp. 999-1007; Pires-Bouccedil, P.D., Izumi, E., Furlaneto-Maia, L., Sturion, L., Suzart, S., Effects of environmental and nutritional factors on gelatinolytic activity by Enterococcus faecalis strains isolated from clinical sources (2010) Afri. J. Microbiol. Res., 4, pp. 969-976; Nallapareddy, S.R., Murray, B.E., Ligand-signaled upregulation of Enterococcus faecalis ace transcription, a mechanism for modulating host-E. Faecalis interaction (2006) Infect. Immun., 74, pp. 4982-4989; Mandlik, A., Swierczynski, A., Das, A., Ton-That, H., Pili in Gram-positive bacteria: Assembly, involvement in colonization and biofilm development (2008) Trends Microbiol., 16, pp. 33-40; Nallapareddy, S.R., Endocarditis and biofilm-Associated pili of Enterococcus faecalis (2006) J. Clin. Invest., 116, pp. 2799-2807; Miller, M.B., Bassler, B.L., Quorum sensing in bacteria (2001) Annu. Rev. Microbiol., 55, pp. 165-199; Hancock, L.E., Perego, M., The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase (2004) J. Bacteriol., 186, pp. 5629-5639; Nakayama, J., Gelatinase biosynthesis-Activating pheromone: A peptide lactone that mediates a quorum sensing in Enterococcus faecalis (2001) Mol. Microbiol., 41, pp. 145-154; Frank, K.L., Use of recombinase-based in vivo expression technology to characterize Enterococcus faecalis gene expression during infection identifies in vivo-expressed antisense RNAs and implicates the protease Eep in pathogenesis (2012) Infect. Immun., 80, pp. 539-549; Dunny, G.M., Berntsson, R.P., Enterococcal sex pheromones: Evolutionary pathways to complex, two-signal systems (2016) J. Bacteriol., 198, pp. 1556-1562; Alby, K., Bennett, R.J., Interspecies pheromone signaling promotes biofilm formation and same-sex mating in Candida albicans (2011) Proc. Natl Acad. Sci. USA, 108, pp. 2510-2515; Clewell, D.B., Francia, M.V., Flannagan, S.E., An, F.Y., Enterococcal plasmid transfer: Sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue (2002) Plasmid, 48, pp. 193-201; Srinivasan, S., Harrington, G.W., Xagoraraki, I., Goel, R., Factors affecting bulk to total bacteria ratio in drinking water distribution systems (2008) Water Res, 42, pp. 3393-3404; Kadry, A.A., Tawfik, A., Abu El-Asrar, A.A., Shibl, A.M., Reduction of mucoid Staphylococcus epidermidis adherence to intraocular lenses by selected antimicrobial agents (1999) Chemotherapy, 45, pp. 56-60; Perez, M., IS256 abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen Enterococcus faecalis V583 (2015) Can. J. Microbiol., 61, pp. 517-519; Aziz, R.K., SEED Servers: High-performance access to the SEED genomes, annotations, and metabolic models (2012) PLoS ONE, 7, p. e48053; Sindhanai, V., Avanthiga, S.S., Suresh Chander, V.C., Antibiotic susceptibility pattern of biofilm forming and biofilm non forming enterococci species (2016) IOSR J. Dent. Med. Sci, 15, pp. 33-37; Akhter, J., Ahmed, S., Saleh, A.A., Anwar, S., Antimicrobial resistance and in vitro biofilm-forming ability of Enterococci spp. Isolated from urinary tract infection in a tertiary care hospital in Dhaka (2014) Bangladesh Med. Res. Counc. Bull., 40, pp. 6-9; Hassan, A., Evaluation of different detection methods of biofilm formation in the clinical isolates (2011) Braz. J. Infect. Dis., 15, pp. 305-311; Mohamed, J.A., Huang, D.B., Biofilm formation by enterococci (2007) J. Med. Microbiol., 56, pp. 1581-1588; Kristich, C.J., Li, Y.H., Cvitkovitch, D.G., Dunny, G.M., Esp-independent biofilm formation by Enterococcus faecalis (2004) J. Bacteriol., 186, pp. 154-163; Baldassarri, L., Enterococcus spp. Produces slime and survives in rat peritoneal macrophages (2001) Med. Microbiol. Immunol., 190, pp. 113-120; Pillai, S.K., Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis (2004) J. Infect. Dis., 190, pp. 967-970; Merritt, J.H., Kadouri, D.E., O'Toole, G.A., (2005) Growing and Analyzing Static Biofilms. Curr. Protoc. Microbiol, , Chapter 1, Unit 1B 1; Papadimitriou-Olivgeris, M., Biofilm synthesis and presence of virulence factors among enterococci isolated from patients and water samples (2015) J. Med. Microbiol., 64, pp. 1270-1276; Qin, X., Singh, K.V., Weinstock, G.M., Murray, B.E., Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF (2001) J. Bacteriol., 183, pp. 3372-3382; Roberts, J.C., Singh, K.V., Okhuysen, P.C., Murray, B.E., Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates (2004) J. Clin. Microbiol., 42, pp. 2317-2320; Mohamed, J.A., Murray, B.E., Lack of correlation of gelatinase production and biofilm formation in a large collection of Enterococcus faecalis isolates (2005) J. Clin. Microbiol., 43, pp. 5405-5407; Sedgley, C.M., Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp (2005) Oral Microbiol. Immunol., 20, pp. 10-19; Nakayama, J., Kariyama, R., Kumon, H., Description of a 23.9-kilobase chromosomal deletion containing a region encoding fsr genes which mainly determines the gelatinase-negative phenotype of clinical isolates of Enterococcus faecalis in urine (2002) Appl. Environ. Microbiol., 68, pp. 3152-3155; Bourgogne, A., Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF (2008) Genome Biol., 9, p. R110; Carniol, K., Gilmore, M.S., Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation (2004) J. Bacteriol., 186, pp. 8161-8163; Werner, G., Emergence and spread of vancomycin resistance among enterococci in Europe (2008) Euro Surveill, 13; Karmarkar, M.G., Gershom, E.S., Mehta, P.R., Enterococcal infections with special reference to phenotypic characterization & drug resistance (2004) Indian J. Med. Res., 119, pp. 22-25; Maestre, J.R., In vitro interference of tigecycline at subinhibitory concentrations on biofilm development by Enterococcus faecalis (2012) J. Antimicrob. Chemother., 67, pp. 1155-1158; Soumet, C., Ermel, G., Fach, P., Colin, P., Evaluation of different DNA extraction procedures for the detection of Salmonella from chicken products by polymerase chain reaction (1994) Lett. Appl. Microbiol., 19, pp. 294-298; Versalovic, J., Koeuth, T., Lupski, J.R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes (1991) Nucleic Acids Res., 19, pp. 6823-6831; Freeman, D.J., Falkiner, F.R., Keane, C.T., New method for detecting slime production by coagulase negative staphylococci (1989) J. Clin. Pathol., 42, pp. 872-874; Christensen, G.D., Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices (1985) J. Clin. Microbiol., 22, pp. 996-1006; Lopes Mde, F., Simoes, A.P., Tenreiro, R., Marques, J.J., Crespo, M.T., Activity and expression of a virulence factor, gelatinase, in dairy enterococci (2006) Int. J. Food Microbiol., 112, pp. 208-214; CLSI Performance Standards for Antimicrobial Susceptibility Testing; Twenty-first Informational Supplement M100-S21, , (Wayne, PA, 2011); Brede, D.A., Snipen, L.G., Ussery, D.W., Nederbragt, A.J., Nes, I.F., Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant (2011) J. Bacteriol., 193, pp. 2377-2378; Altschul, S.F., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
s41598-017-05901-0.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description: