Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Fayez A.M. | |
dc.contributor.author | Zakaria S. | |
dc.contributor.author | Moustafa D. | |
dc.contributor.other | Department of Pharmacology and Toxicology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | MSA University | |
dc.contributor.other | October City 6 | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Department of Pharmacology and Toxicology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October 6 University | |
dc.contributor.other | October City 6 | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:52Z | |
dc.date.available | 2020-01-09T20:40:52Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | Hepatic injury is a major side effect associated with methotrexate (MTX) therapy resulting from inflammatory reactions and oxidative stress induction. Therefore, liver fibrosis incidence is augmented with long-term MTX therapy. Alpha lipoic acid (ALA) is a naturally occurring compound with potent antioxidant activity. This study explored the hepatoprotective mechanisms of ALA against MTX-induced hepatic injury in rats. Hepatic injury was induced in MTX group by 20 mg/kg body weight ip. injection of MTX. ALA group was pretreated with ALA 60 mmol/kg body weight ip. for five days followed by a single dose of MTX in the sixth day. Blood samples and liver tissues were then obtained to assess several biochemical parameters as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), reduced glutathione (GSH), total antioxidant capacity (TAC) and lipid peroxidation. Nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway was studied by determining the extent of mRNA Nrf2 expression and the level of HO-1. Hepatic stellate cells (HSCs) activation was evaluated by estimating the expression of ?-smooth muscle actin (?-SMA) and hydroxyproline content. Also, tumor necrosis factor alpha (TNF-?), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and caspase-3 were assessed by ELISA in addition to histopathological examination of liver samples. Results showed that ALA pretreatment improved liver function since serum ALT, AST and ALP levels were reduced. Additionally, ALA restored GSH and TAC levels when compared to MTX group and decreased lipid peroxidation. ALA exerted its antioxidant effect via Nrf2/HO-1 pathway as well as it showed anti-inflammatory and antiapoptotic effects by reducing TNF-? iNOS, COX-2 and caspase-3 levels in liver tissue homogenate. Finally, ALA suppressed HSCs activation by decreasing ?-SMA expression and hydroxyproline content in liver. It was concluded that ALA has hepatoprotective effects against MTX-induced hepatic injury mediated by Nrf2/HO-1 pathway as well as anti-inflammatory and antiapoptotic properties. � 2018 Elsevier Masson SAS | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=28620&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.biopha.2018.05.145 | |
dc.identifier.doi | PubMed ID 29879626 | |
dc.identifier.issn | 7533322 | |
dc.identifier.other | https://doi.org/10.1016/j.biopha.2018.05.145 | |
dc.identifier.other | PubMed ID 29879626 | |
dc.identifier.uri | https://t.ly/kNq39 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Masson SAS | en_US |
dc.relation.ispartofseries | Biomedicine and Pharmacotherapy | |
dc.relation.ispartofseries | 105 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | Antimicrobial sensitivity | |
dc.subject | Gastric | |
dc.subject | cancer H. | |
dc.subject | pylori | |
dc.subject | Alpha lipoic acid | en_US |
dc.subject | Hepatic stellate cells | en_US |
dc.subject | Inflammatory responses | en_US |
dc.subject | Methotrexate | en_US |
dc.subject | Nrf2/HO-1 pathway | en_US |
dc.subject | Oxidative stress | en_US |
dc.subject | ?-Smooth muscle actin | en_US |
dc.subject | alkaline phosphatase | en_US |
dc.subject | alpha smooth muscle actin | en_US |
dc.subject | aspartate aminotransferase | en_US |
dc.subject | caspase 3 | en_US |
dc.subject | cyclooxygenase 2 | en_US |
dc.subject | glutathione | en_US |
dc.subject | heme oxygenase 1 | en_US |
dc.subject | hydroxyproline | en_US |
dc.subject | inducible nitric oxide synthase | en_US |
dc.subject | messenger RNA | en_US |
dc.subject | methotrexate | en_US |
dc.subject | thioctic acid | en_US |
dc.subject | transcription factor Nrf2 | en_US |
dc.subject | tumor necrosis factor | en_US |
dc.subject | antioxidant | en_US |
dc.subject | biological marker | en_US |
dc.subject | heme oxygenase 1 | en_US |
dc.subject | methotrexate | en_US |
dc.subject | thioctic acid | en_US |
dc.subject | transcription factor Nrf2 | en_US |
dc.subject | alanine aminotransferase blood level | en_US |
dc.subject | alkaline phosphatase blood level | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | antioxidant activity | en_US |
dc.subject | Article | en_US |
dc.subject | aspartate aminotransferase blood level | en_US |
dc.subject | cell activation | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug mechanism | en_US |
dc.subject | enzyme linked immunosorbent assay | en_US |
dc.subject | hepatic stellate cell | en_US |
dc.subject | histopathology | en_US |
dc.subject | lipid peroxidation | en_US |
dc.subject | liver function | en_US |
dc.subject | liver injury | en_US |
dc.subject | liver protection | en_US |
dc.subject | liver tissue | en_US |
dc.subject | male | en_US |
dc.subject | mRNA expression level | en_US |
dc.subject | nonhuman | en_US |
dc.subject | priority journal | en_US |
dc.subject | protein expression level | en_US |
dc.subject | rat | en_US |
dc.subject | tissue homogenate | en_US |
dc.subject | animal | en_US |
dc.subject | apoptosis | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | hepatic stellate cell | en_US |
dc.subject | inflammation | en_US |
dc.subject | liver | en_US |
dc.subject | metabolism | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | pathology | en_US |
dc.subject | pathophysiology | en_US |
dc.subject | signal transduction | en_US |
dc.subject | Animals | en_US |
dc.subject | Antioxidants | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Biomarkers | en_US |
dc.subject | Heme Oxygenase-1 | en_US |
dc.subject | Hepatic Stellate Cells | en_US |
dc.subject | Inflammation | en_US |
dc.subject | Liver | en_US |
dc.subject | Male | en_US |
dc.subject | Methotrexate | en_US |
dc.subject | NF-E2-Related Factor 2 | en_US |
dc.subject | Oxidative Stress | en_US |
dc.subject | Rats | en_US |
dc.subject | Signal Transduction | en_US |
dc.subject | Thioctic Acid | en_US |
dc.title | Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Moghadam, A.R., Tutunchi, S., Namvaran-Abbas-Abad, A., Yazdi, M., Bonyadi, F., Mohajeri, D., Mazani, M., Ghavami, S., Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress (2015) BMC Complement. Altern. Med., 15 (246); Jaeschke, H., Woolbright, B.L., Current strategies to minimize hepatic ischemia�reperfusion injury by targeting reactive oxygen species (2012) Transpl. Rev., 26, pp. 103-114; Prestigiacomo, V., Weston, A., Messner, S., Lampart, F., Suter-Dick, L., Pro-fibrotic compounds induce stellate cell activation, ECM-remodelling and Nrf2 activation in a human 3D-multicellular model of liver fibrosis (2017) PLoS One, 12; Famurewa, A.C., Ufebe, O.G., Egedigwe, C.A., Nwankwo, O.E., Obaje, G.S., Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats (2017) Biomed. Pharmacother., 87, pp. 437-442; Rockey, D.C., Weymouth, N., Shi, Z., Paquet, N., Ravier, F., Smooth muscle ? actin (Acta2) and myofibroblast function during hepatic wound healing (2013) PLoS One, 8; Yu, J., Wu, C.W., Chu, E.S.H., Hui, A.Y., Cheng, A.S.L., Go, M.Y.Y., Ching, A.K.K., Sung, J.J.Y., Elucidation of the role of COX-2 in liver fibrogenesis using transgenic mice (2008) Biochem. Biophys. Res. Commun., 372, pp. 571-577; Anavi, S., Eisenberg-Bord, M., Hahn-Obercyger, M., Genin, O., Pines, M., Tirosh, O., The role of iNOS in cholesterol-induced liver fibrosis (2015) Lab. Investig., 95, pp. 914-924; Jeon, M.J., Kim, W.G., Lim, S., Choi, H.-J., Sim, S., Kim, T.Y., Shong, Y.K., Kim, W.B., Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells (2016) Mol. Cell. Endocrinol., 419, pp. 113-123; Shi, C., Zhou, X., Zhang, J., Wang, J., Xie, H., Wu, Z., ?-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway (2016) Environ. Toxicol. Pharmacol., 45, pp. 274-281; Hu, H., Wang, C., Jin, Y., Meng, Q., Liu, Q., Liu, K., Sun, H., Alpha-lipoic acid defends homocysteine-induced endoplasmic reticulum and oxidative stress in HAECs (2016) Biomed. Pharmacother., 80, pp. 63-72; Ma, Q., Li, Y., Fan, Y., Zhao, L., Wei, H., Ji, C., Zhang, J., Molecular mechanisms of lipoic acid protection against aflatoxin B?-induced liver oxidative damage and inflammatory responses in broilers (2015) Toxins (Basel), 7, pp. 5435-5447; Piechota-Polanczyk, A., Zieli?ska, M., Piekielny, D., Fichna, J., The influence of lipoic acid on caveolin-1-regulated antioxidative enzymes in the mouse model of acute ulcerative colitis (2016) Biomed. Pharmacother., 84, pp. 470-475; Li, J., Hu, R., Xu, S., Li, Y., Qin, Y., Wu, Q., Xiao, Z., Xiaochaihutang attenuates liver fibrosis by activation of Nrf2 pathway in rats (2017) Biomed. Pharmacother., 96, pp. 847-853; Ge, M., Yao, W., Yuan, D., Zhou, S., Chen, X., Zhang, Y., Li, H., Hei, Z., Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury (2017) Cell Death Dis., 8, p. e2841; �ak?r, T., Ba?t�rk, A., Polat, C., Aslaner, A., Durgut, H., ?ehirli, A.�., G�l, M., Oru�, M.T., Does alfa lipoic acid prevent liver from methotrexate induced oxidative injury in rats? (2015) Acta Cir�rgica Bras. / Soc. Bras. Para Desenvolv. Pesqui. Em Cir., 30, pp. 247-252; Bancroft, J.D.C., (Histologist) Layton, S.K. Suvarna, Bancroft's theory and practice of histological techniques, n.d; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal. Biochem., 95, pp. 351-358; Jollow, D., Mitchell, J.R., Zampaglione, N., Gillette, J.R., Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite (1974) Pharmacology, 11, pp. 151-169; Stamp, L., Roberts, R., Kennedy, M., Barclay, M., O'Donnell, J., Chapman, P., The use of low dose methotrexate in rheumatoid arthritis - are we entering a new era of therapeutic drug monitoring and pharmacogenomics? (2006) Biomed. Pharmacother., 60, pp. 678-687; Al Maruf, A., O'Brien, P.J., Naserzadeh, P., Fathian, R., Salimi, A., Pourahmad, J., Methotrexate induced mitochondrial injury and cytochrome c release in rat liver hepatocytes (2017) Drug. Chem. Toxicol., pp. 1-11; Mahmoud, A.M., Hussein, O.E., Hozayen, W.G., Abd El-Twab, S.M., Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPAR? and Nrf2: protective effect of 18?-glycyrrhetinic acid (2017) Chem. Biol. Interact., 270, pp. 59-72; Khalifa, M.M.A., Bakr, A.G., Osman, A.T., Protective effects of phloridzin against methotrexate-induced liver toxicity in rats (2017) Biomed. Pharmacother., 95, pp. 529-535; Montasser, A.O.S., Saleh, H., Ahmed-Farid, O.A., Saad, A., Marie, M.-A.S., Protective effects of Balanites aegyptiaca extract, Melatonin and Ursodeoxycholic acid against hepatotoxicity induced by Methotrexate in male rats (2017) Asian Pac. J. Trop. Med., 10, pp. 557-565; I, E.E., Ii, Y.I., Naile, P., Iii, G., Iv, Y.O., V, T.T., Vi, E.O., Rutin ameliorates methotrexate induced hepatic injury in rats 1, 30 (n.d.) 778�784. doi:; Sotoudehmanesh, R., Anvari, B., Akhlaghi, M., Shahraeeni, S., Kolahdoozan, S., Sotoudehmanesh, R., Methotrexate hepatotoxicity in patients with rheumatoid arthritis (2010) Middle East J. Dig. Dis., 2; Kose, E., Sapmaz, H.I., Sarihan, E., Vardi, N., Turkoz, Y., Ekinci, N., Beneficial effects of montelukast against methotrexate-induced liver toxicity: a biochemical and histological study (2012) Sci. World J., 2012; Abdel-Daim, M.M., Khalifa, H.A., Abushouk, A.I., Dkhil, M.A., Al-Quraishy, S.A., Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: a biochemical and histopathological study in mice (2017) Oxid. Med. Cell. Longev., 2017; Ghelani, H., Razmovski-Naumovski, V., Nammi, S., Chronic treatment of (R)- ? -lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats (2017) Pharmacol. Res. Perspect., 5, p. e00306; El-Sayed, E.-S.M., Mansour, A.M., El-Sawy, W.S., Alpha lipoic acid prevents doxorubicin-induced nephrotoxicity by mitigation of oxidative stress, inflammation, and apoptosis in rats (2017) J. Biochem. Mol. Toxicol., 31, p. e21940; Zamani, E., Shaki, F., AbedianKenari, S., Shokrzadeh, M., Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways (2017) Biomed. Pharmacother., 94, pp. 523-530; Niki, E., Lipid peroxidation products as oxidative stress biomarkers (2008) Biofactors, 34, pp. 171-180. , http://www.ncbi.nlm.nih.gov/pubmed/19706982, (Accessed 9 September, 2017); A.V, V., K, R.R., Kurrey, N.K., K.A, A.A., G, V., Protective effects of phenolics rich extract of ginger against Aflatoxin B 1 -induced oxidative stress and hepatotoxicity (2017) Biomed. Pharmacother., 91, pp. 415-424; Savran, M., Cicek, E., Doguc, D., Asci, H., Yesilot, S., Candan, I., Dagdeviren, B., Ozer, M., Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats (2017) Physiol. Int., 104, pp. 139-149; Ateyya, H., Nader, M.A., Attia, G.M., El-Sherbeeny, N.A., Influence of alpha-lipoic acid on nicotine-induced lung and liver damage in experimental rats (2017) Can. J. Physiol. Pharmacol., 95, pp. 492-500; Khalaf, A., Zaki, A., Galal, M., Ogaly, H., Ibrahim, M., Hassan, A., The potential protective effect of ?-lipoic acid against nanocopper particle�induced hepatotoxicity in male rats (2017) Hum. Exp. Toxicol., 36, pp. 881-891; Savran, M., Cicek, E., Doguc, D., Asci, H., Yesilot, S., Candan, I., Dagdeviren, B., Ozer, M., Vitamin C attenuates methotrexate-induced oxidative stress in kidney and liver of rats (2017) Physiol. Int., 104, pp. 139-149; Martin, D., Rojo, A.I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., de Galarreta, C.M.R., Cuadrado, A., Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol (2004) J. Biol. Chem., 279, pp. 8919-8929; Mahmoud, A.M., Hozayen, W.G., Ramadan, S.M., Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPAR? and suppressing oxidative stress and apoptosis in rats (2017) Biomed. Pharmacother., 94, pp. 280-291; Mahmoud, A.M., Hussein, O.E., Hozayen, W.G., Abd El-Twab, S.M., Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPAR? and Nrf2: protective effect of 18?-glycyrrhetinic acid (2017) Chem. Biol. Interact., 270, pp. 59-72; Ali, N., Rashid, S., Nafees, S., Hasan, S.K., Shahid, A., Majed, F., Sultana, S., Protective effect of chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: an experimental approach (2017) Chem. Biol. Interact., 272, pp. 80-91; Abo-Haded, H.M., Elkablawy, M.A., Al-johani, Z., Al-ahmadi, O., El-Agamy, D.S., Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity (2017) PLoS One, 12; Sokar, S.S., El-Sayad, M.E.-S., Ghoneim, M.E.-S., Shebl, A.M., Combination of sitagliptin and silymarin ameliorates liver fibrosis induced by carbon tetrachloride in rats (2017) Biomed. Pharmacother., 89, pp. 98-107; Tsuchida, T., Friedman, S.L., Mechanisms of hepatic stellate cell activation (2017) Nat. Rev. Gastroenterol. Hepatol., 14, pp. 397-411 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: