Characterization of thermo and pH responsive NIPAM based microgels and their membrane blocking potential

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMohsen, Reham
dc.contributor.authorJ. Vine, George
dc.contributor.authorMajcen, Natasa
dc.contributor.authorD. Alexander, Bruce
dc.contributor.authorJ Snowden, Martin
dc.date.accessioned2020-02-29T09:00:11Z
dc.date.available2020-02-29T09:00:11Z
dc.date.issued2013
dc.descriptionMSA Google Scholaren_US
dc.description.abstractThis work aims to study the behavior of temperature-responsive p(NIPAM) and temperature/pHresponsive p(NIPAM)/acrylic acid (AA) microgels. Three microgels were synthesized using surfactant free emulsion polymerization technique, these are p(NIPAM), p(NIPAM)-co-AA 95:5% (w/w) and p(NIPAM)- co-AA 90:10% (w/w). Dynamic light scattering was used to study the behavior of diluted microgel dispersions (0.5%, w/w p(NIPAM)), while rheology was used to study the viscosity of 2% (w/w) p(NIPAM) dispersions. The characterization data indicate the swelling/deswelling and flocculation/deflocculation behavior of the microgels. The conditions required for flocculation were used to test the ability of the microgel dispersions to block a membrane of pore size 5 m. In 3 h, p(NIPAM), p(NIPAM) 5% AA (w/w) and p(NIPAM)10% AA (w/w) blocked the membrane (decrease the flow rate) by 96.16, 59.44 and 59.8% respectively. Thus,the controlled flocculation of microgels may be used in applications where pore blocking is important such as the treatment of dentinal hypersensitivity, given that the VPTT of p(NIPAM) is ≈34 ◦C, which is very close to the human body temperature.en_US
dc.identifier.citation[1] V. Lopez, S. Raghavan, M. Snowden, Colloidal microgels as transdermal delivery systems, React. Funct. Polym. 58 (2004) 175–185. [2] B. Saunders,N. Laajam, E. Daly, S. Teow,X.Hu,R. Stepto,Microgels:fromresponsive polymer colloids to biomaterials, Adv. Colloid Interface Sci. 147 (48)(2009) 251–262. [3] X. Ma, X. Tang, Flocculation behavior of temperature-sensitive poly (Nisopropylacrylamide) microgels containing polar side chains with OH groups, J. Colloid Interface Sci. 299 (2006) 217–224. [4] M.Ramusson,B.Vincent, Flocculationofmicrogelparticles,React. Funct. Polym. 58 (2004) 203–211. [5] T. Dayong, H. Jingli, Z. Xinge, W. Xin, W. Zhen, L. Chaoxing, Glucosaminecarrying temperature- and pH-sensitive microgels: preparation, characterization, and in vitro drug release studies, J. Colloid Interface Sci. 322 (2008) 333–341. [6] K. Karl, H. Thomas, E. Wolfgang, Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels, Colloid Surf. A: Physicochem. Eng. Aspects 170 (2000) 137–149.[7] M. Ali, S. Aguirre, X. Yaqin, C. Filipe, R. Pelton, Y. Li, Detection of DNA using bioactive paper strips, Chem. Commun. 43 (2009) 6640–6642. [8] R. Pelton, P. Chibante, Preparation of aqueous lattices with Nisopropylacrylamide, Colloid Surf. 20 (1986) 247–256. [9] B. Saunders, B. Vincent, Microgel particles as model colloids: theory, properties and applications, Adv. Colloid Interface Sci. 80 (1999) 1–25. [10] G. Bokiasa, Solution properties and phase behaviour of copolymers of acrylic acid with N-isopropylacrylamide: the importance of the intrachain hydrogen bonding, Polymer 41 (2000) 7399–7405. [11] J. Thorne, G. Vine, M. Snowden, Microgel applications and commercial considerations, Colloid Polym. Sci. 289 (2012) 625–646. [12] D. Shaw, Colloid and Surface Chemistry, fourth ed., Elsevier Science, London, 1992. [13] A. Ranee, C. Eugene, R. Wesley, E. Kevin, Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology, J. Biomater. Sci. Polym. Ed. 15 (2004) 865–878. [14] I. Kaneda, A. Sogabe, Rheological properties of water swellable microgel polymerized in a confined space, Colloid Surf. A: Physicochem. Eng. Aspects 270 (2005) 163–170. [15] B. Tan,K. Tam,Y. Lam,C. Tan,Microstructure and rheology of stimuli-responsive microgel systems—effect of cross-linked density, Adv. Colloid Interface Sci. 113 (2005) 111–120. [16] A. John, Compression effects on the behavior of microgel assemblies, Doctor of Philosophy, Georgia Institute of Technology, 2008. [17] H. Senff,W. Richtering, Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions, Colloid Polym. Sci. 278 (2000) 830–840. [18] Z. Dong, Y. Li, M. Lin, M. Li, Rheological properties of polymer micro-gel dispersions, Pet. Sci. 6 (2009) 294–298. [19] M. Snowden, J. Morgan, B. Vincent, A novel method for the enhanced recovery of oil, UK Patent No. GB2262117A. [20] J. Goodwin, R. Ottewill, R. Pelton, G. Vianello, D. Yates, Control of particle-size in formation of polymer lattices, Br. Polym. J. 10 (1978) 173–180. [21] H. Nur, M. Snowden, V. Cornelius, J. Mitchell, P. Harvey, L. Benee, Colloidal microgel in removal of water from biodiesel, Colloid Surf. A: Physicochem. Eng. Aspects 335 (2009) 133–137. [22] H. Nur, Colloidal microgels: synthesis, characterization and applications, Doctor of Philosophy, University of Greenwich, 2009. [23] M. Das, E. Kumancheva, From polyelectrolyte to polyampholyte microgels: comparison of swelling properties, Colloid Polym. Sci. 284 (2006) 1073–1084. [24] H. Shimizu, R. Wada, M. Okabe, Preparation and characterization of micrometer-sized poly (N-isopropylacrylamide) hydrogel particles, Polym. J. 41 (2009) 771–777. [25] H. Kim, S. Park, S. Kim, N. Kim, S. Kim, Electroactive polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial, Synth. Met. 155 (2005) 674–676. [26] D. Suzuki, T. Sakai, R. Yoshida, Self-flocculating/self-dispersing oscillation of microgels, Angew. Chem. Int. Ed. 47 (2008) 917–920. [27] M. Lopes, M. Sinhoreti, A. Junior, S. Consani, J. Mccabe, Comparative study of tubular diameter and quantity for human and bovine dentin at different depths, Br. Dent. J. 20 (2009) 279–283.en_US
dc.identifier.doihttps://doi.org/10.1016/j.colsurfa.2013.03.031
dc.identifier.otherhttps://doi.org/10.1016/j.colsurfa.2013.03.031
dc.identifier.urihttps://t.ly/KX3RP
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesColloids and Surfaces A: Physicochemical and Engineering Aspects;Volume 428, 5 July 2013, Pages 53-59
dc.subjectp(NIPAM)en_US
dc.subjectAcrylic aciden_US
dc.subjectDLSen_US
dc.subjectRheologyen_US
dc.subjectParticle concentrationen_US
dc.subjectMembrane blockageen_US
dc.titleCharacterization of thermo and pH responsive NIPAM based microgels and their membrane blocking potentialen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Faculty of Biotechnology Research Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: