miRNome and Proteome Profiling of Human Keratinocytes and Adipose Derived Stem Cells Proposed miRNA-Mediated Regulations of Epidermal Growth Factor and Interleukin 1-Alpha

Loading...
Thumbnail Image

Date

2023-03

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Series Info

International Journal of Molecular Sciences;Volume 24, Issue 5March 20

Abstract

Wound healing is regulated by complex crosstalk between keratinocytes and other cell types, including stem cells. In this study, a 7-day direct co-culture model of human keratinocytes and adipose-derived stem cells (ADSCs) was proposed to study the interaction between the two cell types, in order to identify regulators of ADSCs differentiation toward the epidermal lineage. As major mediators of cell communication, miRNome and proteome profiles in cell lysates of cultured human keratinocytes and ADSCs were explored through experimental and computational analyses. GeneChip® miRNA microarray, identified 378 differentially expressed miRNAs; of these, 114 miRNAs were upregulated and 264 miRNAs were downregulated in keratinocytes. According to miRNA target prediction databases and the Expression Atlas database, 109 skin-related genes were obtained. Pathway enrichment analysis revealed 14 pathways including vesicle-mediated transport, signaling by interleukin, and others. Proteome profiling showed a significant upregulation of the epidermal growth factor (EGF) and Interleukin 1-alpha (IL-1α) compared to ADSCs. Integrated analysis through cross-matching the differentially expressed miRNA and proteins suggested two potential pathways for regulations of epidermal differentiation; the first is EGF-based through the downregulation of miR-485-5p and miR-6765-5p and/or the upregulation of miR-4459. The second is mediated by IL-1α overexpression through four isomers of miR-30-5p and miR-181a-5p. © 2023 by the authors.

Description

Keywords

adipose-derAuthorived stem cells;, direct co-culture;, epidermal growth factor;, interleukin 1 alpha;, keratinocytes;, miRNA;, proteome;, stem cell differentiation

Citation