Thermal stability of a mercuric reductase from the Red Sea Atlantis II hot brine environment as analyzed by site-directed mutagenesis
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Maged M. | |
dc.contributor.author | Hosseiny A.E. | |
dc.contributor.author | Saadeldin M.K. | |
dc.contributor.author | Aziz R.K. | |
dc.contributor.author | Ramadan E. | |
dc.contributor.other | Department of Biology | |
dc.contributor.other | School of Sciences and Engineering | |
dc.contributor.other | The American University in Cairo | |
dc.contributor.other | New Cairo | |
dc.contributor.other | Egypt; Department of Microbiology and Immunology | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Faculty of Pharmacy | |
dc.contributor.other | The British University in Egypt (BUE) | |
dc.contributor.other | El Shorouk | |
dc.contributor.other | Egypt; Science and Technology Research Center | |
dc.contributor.other | School of Sciences and Engineering | |
dc.contributor.other | The American University in Cairo | |
dc.contributor.other | New Cairo | |
dc.contributor.other | Egypt; Faculty of Biotechnology | |
dc.contributor.other | October University for Modern Sciences and Arts | |
dc.contributor.other | 6th October City | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:41Z | |
dc.date.available | 2020-01-09T20:40:41Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | The lower convective layer (LCL) of the Atlantis II brine pool of the Red Sea is a unique environment in terms of high salinity, temperature, and high concentrations of heavy metals. Mercuric reductase enzymes functional in such extreme conditions could be considered a potential tool in the environmental detoxification of mercurial poisoning and might alleviate ecological hazards in the mining industry. Here, we constructed a mercuric reductase library from Atlantis II, from which we identified genes encoding two thermostable mercuric reductase (MerA) isoforms: one is halophilic (designated ATII-LCL) while the other is not (designated ATII-LCLNH). The ATII-LCL MerA has a short motif composed of four aspartic acids (4D414- 417) and two characteristic signature boxes that played a crucial role in its thermal stability. To further understand the mechanism behind the thermostability of the two studied enzymes, we mutated the isoform ATII-LCL-NH and found that the substitution of 2 aspartic acids (2D) at positions 415 and 416 enhanced the thermal stability, while other mutations had the opposite effect. The 2D mutant showed superior thermal tolerance, as it retained 81% of its activity after 10 min of incubation at 70�C. A three-dimensional structure prediction revealed newly formed salt bridges and H bonds in the 2D mutant compared to the parent molecule. To the best of our knowledge, this study is the first to rationally design a mercuric reductase with enhanced thermal stability, which we propose to have a strong potential in the bioremediation of mercurial poisoning. � 2019 American Society for Microbiology. | en_US |
dc.identifier.doi | https://doi.org/10.1128/AEM.02387-18 | |
dc.identifier.doi | PubMedID30446558 | |
dc.identifier.issn | 992240 | |
dc.identifier.other | https://doi.org/10.1128/AEM.02387-18 | |
dc.identifier.other | PubMedID30446558 | |
dc.identifier.uri | https://t.ly/52yxR | |
dc.language.iso | English | en_US |
dc.publisher | American Society for Microbiology | en_US |
dc.relation.ispartofseries | Applied and Environmental Microbiology | |
dc.relation.ispartofseries | 85 | |
dc.subject | Atlantis II | en_US |
dc.subject | Bioprospecting | en_US |
dc.subject | Brine pools | en_US |
dc.subject | Extreme environments | en_US |
dc.subject | MerA | en_US |
dc.subject | Mercuric reductase | en_US |
dc.subject | Protein engineering | en_US |
dc.subject | Red Sea | en_US |
dc.subject | Site-directed mutagenesis | en_US |
dc.subject | Thermostable | en_US |
dc.subject | Amino acids | en_US |
dc.subject | Bioremediation | en_US |
dc.subject | Chemical bonds | en_US |
dc.subject | Detoxification | en_US |
dc.subject | Enzymes | en_US |
dc.subject | Heavy metals | en_US |
dc.subject | Mutagenesis | en_US |
dc.subject | Stability | en_US |
dc.subject | Atlantis | en_US |
dc.subject | Bioprospecting | en_US |
dc.subject | Brine pools | en_US |
dc.subject | Extreme environment | en_US |
dc.subject | MerA | en_US |
dc.subject | Mercuric reductase | en_US |
dc.subject | Protein engineering | en_US |
dc.subject | Red sea | en_US |
dc.subject | Site directed mutagenesis | en_US |
dc.subject | Thermostable | en_US |
dc.subject | Thermodynamic stability | en_US |
dc.subject | bioremediation | en_US |
dc.subject | brine | en_US |
dc.subject | detoxification | en_US |
dc.subject | enzyme | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | genetic analysis | en_US |
dc.subject | heavy metal | en_US |
dc.subject | temperature tolerance | en_US |
dc.subject | Indian Ocean | en_US |
dc.subject | Red Sea [Indian Ocean] | en_US |
dc.subject | bacterial protein | en_US |
dc.subject | mercuric reductase | en_US |
dc.subject | mercury | en_US |
dc.subject | oxidoreductase | en_US |
dc.subject | sea water | en_US |
dc.subject | amino acid sequence | en_US |
dc.subject | bacterium | en_US |
dc.subject | chemistry | en_US |
dc.subject | ecosystem | en_US |
dc.subject | enzyme stability | en_US |
dc.subject | enzymology | en_US |
dc.subject | genetics | en_US |
dc.subject | heat | en_US |
dc.subject | Indian Ocean | en_US |
dc.subject | isolation and purification | en_US |
dc.subject | kinetics | en_US |
dc.subject | metabolism | en_US |
dc.subject | microbiology | en_US |
dc.subject | protein motif | en_US |
dc.subject | sequence alignment | en_US |
dc.subject | site directed mutagenesis | en_US |
dc.subject | Amino Acid Motifs | en_US |
dc.subject | Amino Acid Sequence | en_US |
dc.subject | Bacteria | en_US |
dc.subject | Bacterial Proteins | en_US |
dc.subject | Ecosystem | en_US |
dc.subject | Enzyme Stability | en_US |
dc.subject | Hot Temperature | en_US |
dc.subject | Indian Ocean | en_US |
dc.subject | Kinetics | en_US |
dc.subject | Mercury | en_US |
dc.subject | Mutagenesis, Site-Directed | en_US |
dc.subject | Oxidoreductases | en_US |
dc.subject | Seawater | en_US |
dc.subject | Sequence Alignment | en_US |
dc.title | Thermal stability of a mercuric reductase from the Red Sea Atlantis II hot brine environment as analyzed by site-directed mutagenesis | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | (2015) Red Sea. New World Encyclopedia, , http://www.newworldencyclopedia.org/p/index.php?title=Red_Sea&oldid=989212; Bower, A., (2009) R/V Oceanus Voyage 449-6 Red Sea Atlantis II Deep Complex Area, , http://www.whoi.edu/science/PO/people/www-abower/abower/techreps/KAUST_CTR0901_press.pdf, 19 October-1 November 2008. Woods Hole Oceanographic Institute Technical Report. Woods Hole Oceanographic Institute (WHOI) and King Abdullah University of Science and Technology, Woods Hole, MA; Botz, R., Schmidt, M., Wehner, H., Hufnagel, H., Stoffers, P., Organic-rich sediments in brine-filled Shaban-and Kebrit deeps, northern Red Sea (2007) Chem Geol, 244, pp. 520-553. , https://doi.org/10.1016/j.chemgeo.2007.07.004; Speth, D.R., Lagkouvardos, I., Wang, Y., Qian, P.-Y., Dutilh, B.E., Jetten, M.S.M., Draft genome of Scalindua rubra, obtained from the interface above the Discovery Deep brine in the Red Sea, sheds light on potential salt adaptation strategies in Anammox bacteria (2017) Microb Ecol, 74, pp. 1-5. , https://doi.org/10.1007/s00248-017-0929-7; Wang, Y., Cao, H., Zhang, G., Bougouffa, S., Lee, O.O., Al-Suwailem, A., Qian, P.Y., Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools (2013) Sci Rep, 3, p. 1748. , https://doi.org/10.1038/srep01748; Hartmann, M., Scholten, J.C., Stoffers, P., Wehner, F., Hydrographic structure of brine-filled deeps in the Red Sea-new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep (1998) Mar Geol, 144, pp. 311-330. , https://doi.org/10.1016/S0025-3227(97)00055-8; Wang, Y., Yang, J., Lee, O.O., Dash, S., Lau, S.C., Al-Suwailem, A., Wong, T.Y., Qian, P.Y., Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea (2011) ISME J, 5, pp. 1652-1659. , https://doi.org/10.1038/ismej.2011.42; Wang, Y., Li, J.T., He, L.S., Yang, B., Gao, Z.M., Cao, H.L., Batang, Z., Qian, P.Y., Zonation of microbial communities by a hydrothermal mound in the Atlantis II Deep (the Red Sea) (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0140766; Laurila, T.E., Hannington, M.D., Leybourne, M., Petersen, S., Devey, C.W., Garbe-Sch�nberg, D., New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea (2015) Geochem Geophys Geosyst, 16, pp. 4449-4478. , https://doi.org/10.1002/2015GC006010; Antunes, A., Ngugi, D.K., Stingl, U., Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes (2011) Environ Microbiol Rep, 3, pp. 416-433. , https://doi.org/10.1111/j.1758-2229.2011.00264.x; Siam, R., Mustafa, G.A., Sharaf, H., Moustafa, A., Ramadan, A.R., Antunes, A., Bajic, V.B., Dorry, H.E., Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0042872; Nascimento, A.M., Chartone-Souza, E., Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments (2003) Genet Mol Res, 2, pp. 92-101; Mathema, V.B., Thakuri, B.C., Sillanpaa, M., Bacterial mer operonmediated detoxification of mercurial compounds: a short review (2011) Arch Microbiol, 193, pp. 837-844. , https://doi.org/10.1007/s00203-011-0751-4; Moller, A.K., Barkay, T., Hansen, M.A., Norman, A., Hansen, L.H., Sorensen, S.J., Boyd, E.S., Kroer, N., Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine (2014) FEMS Microbiol Ecol, 87, pp. 52-63. , https://doi.org/10.1111/1574-6941.12189; Zheng, R., Wu, S., Ma, N., Sun, C., Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress (2018) Front Microbiol, 9, p. 682. , https://doi.org/10.3389/fmicb.2018.00682; Varekamp, J.C., Buseck, P.R., The speciation of mercury in hydrothermal systems, with applications to ore deposition (1984) Geochim Cosmochim Acta, 48, pp. 177-185. , https://doi.org/10.1016/0016-7037(84)90359-4; Gworek, B., Bemowska-Kalabun, O., Kijen?ka, M., Wrzosek-Jakubowska, J., Mercury in marine and oceanic waters-a review (2016) Water Air Soil Pollut, 227, p. 371. , https://doi.org/10.1007/s11270-016-3060-3; Ay, N., Content of mercury in some natural waters (1962) Chem Abstr, 57, p. 16336; Pempkowiak, J., Cossa, D., Sikora, A., Sanjuan, J., Mercury in water and sediments of the southern Baltic sea (1998) Sci Total Environ, 213, pp. 185-192; Ci, Z., Zhang, X., Wang, Z., Niu, Z., Phase speciation of mercury (Hg) in coastal water of the Yellow Sea, China (2011) Mar Chem, 126, pp. 250-255. , https://doi.org/10.1016/j.marchem.2011.06.004; Brown, N.L., Ford, S.J., Pridmore, R.D., Fritzinger, D.C., Nucleotide se-quence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase (1983) Biochemistry, 22, pp. 4089-4095; Schiering, N., Kabsch, W., Moore, M.J., Distefano, M.D., Walsh, C.T., Pai, E.F., Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607 (1991) Nature, 352, pp. 168-172. , https://doi.org/10.1038/352168a0; Miller, S.M., Moore, M.J., Massey, V., Williams, C.H., Jr., Distefano, M.D., Ballou, D.P., Walsh, C.T., Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase (1989) Biochemistry, 28, pp. 1194-1205; Wang, Y., Freedman, Z., Lu-Irving, P., Kaletsky, R., Barkay, T., An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27 (2009) FEMS Microbiol Ecol, 67, pp. 118-129. , https://doi.org/10.1111/j.1574-6941.2008.00603.x; Li, W.F., Zhou, X.X., Lu, P., Structural features of thermozymes (2005) Biotechnol Adv, 23, pp. 271-281. , https://doi.org/10.1016/j.biotechadv.2005.01.002; Vieille, C., Burdette, D.S., Zeikus, J.G., Thermozymes (1996) Biotechnol Annu Rev, 2, pp. 1-83; Huang, R., Yang, Q., Feng, H., Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence (2015) Acta Biochim Biophys Sin (Shanghai), 47, pp. 98-105. , https://doi.org/10.1093/abbs/gmu120; Trivedi, S., Gehlot, H.S., Rao, S.R., Protein thermostability in Archaea and Eubacteria (2006) Genet Mol Res, 5, pp. 816-827; Suzuki, Y., A general principle of increasing protein thermostability (1989) Proc Jpn Acad Ser B Phys Biol Sci, 65, pp. 146-148; Sayed, A., Ghazy, M.A., Ferreira, A.J., Setubal, J.C., Chambergo, F.S., Ouf, A., Adel, M., El-Dorry, H., A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea (2014) J Biol Chem, 289, pp. 1675-1687. , https://doi.org/10.1074/jbc.M113.493429; Artz, J.H., White, S.N., Zadvornyy, O.A., Fugate, C.J., Hicks, D., Gauss, G.H., Posewitz, M.C., Peters, J.W., Biochemical and structural properties of a thermostable mercuric ion reductase from Metallosphaera sedula (2015) Front Bioeng Biotechnol, 3, p. 97. , https://doi.org/10.3389/fbioe.2015.00097; Bafana, A., Khan, F., Suguna, K., Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1 (2017) Biometals, 30, pp. 809-819. , https://doi.org/10.1007/s10534-017-0050-x; Baker, E.N., Hubbard, R.E., Hydrogen bonding in globular proteins (1984) Prog Biophys Mol Biol, 44, pp. 97-179; Petsko, G.A., Ringe, D., (2004) Bonds that stabilize folded proteins, p 10-11, , Protein structure and function. New Science Press, London, United Kingdom; Costantini, S., Colonna, G., Facchiano, A.M., ESBRI: a web server for evaluating salt bridges in proteins (2008) Bioinformation, 3, pp. 137-138; Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., Pupko, T., Ben-Tal, N., ConSurf: using evolutionary data to raise testable hypotheses about protein function (2013) Isr J Chem, 53, pp. 199-206. , https://doi.org/10.1002/ijch.201200096; Madern, D., Ebel, C., Zaccai, G., Halophilic adaptation of enzymes (2000) Extremophiles, 4, pp. 91-98; Mevarech, M., Frolow, F., Gloss, L.M., Halophilic enzymes: proteins with a grain of salt (2000) Biophys Chem, 86, pp. 155-164. , https://doi.org/10.1016/S0301-4622(00)00126-5; Fukuchi, S., Yoshimune, K., Wakayama, M., Moriguchi, M., Nishikawa, K., Unique amino acid composition of proteins in halophilic bacteria (2003) J Mol Biol, 327, pp. 347-357. , https://doi.org/10.1016/S0022-2836(03)00150-5; Siglioccolo, A., Paiardini, A., Piscitelli, M., Pascarella, S., Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface (2011) BMC Struct Biol, 11, p. 50. , https://doi.org/10.1186/1472-6807-11-50; Zeroual, Y.M.A., Dzairi, F.Z., Talbi, M., Chung, P.U., Lee, K., Purification and characterization of cytosolic mercuric reductase from Klebsiella pneumoniae (2003) Ann Microbiol, 53, pp. 149-160; Takano, K., Higashi, R., Okada, J., Mukaiyama, A., Tadokoro, T., Koga, Y., Kanaya, S., Proline effect on the thermostability and slow unfolding of a hyperthermophilic protein (2009) J Biochem, 145, pp. 79-85. , https://doi.org/10.1093/jb/mvn144; Watanabe, K., Masuda, T., Ohashi, H., Mihara, H., Suzuki, Y., Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase Irrefragable proof supporting the proline rule (1994) Eur J Biochem, 226, pp. 277-283; Watanabe, K., Kitamura, K., Suzuki, Y., Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues (1996) Appl Environ Microbiol, 62, pp. 2066-2073; Hardy, F., Vriend, G., Veltman, O.R., van der Vinne, B., Venema, G., Eijsink, V.G., Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines (1993) FEBS Lett, 317, pp. 89-92. , https://doi.org/10.1016/0014-5793(93)81497-N; Imanaka, T., Molecular bases of thermophily in hyperthermophiles (2011) Proc Jpn Acad Ser B Phys Biol Sci, 87, pp. 587-602. , https://doi.org/10.2183/pjab.87.587; Kumar, S., Ma, B., Tsai, C.J., Nussinov, R., Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers (2000) Proteins, 38, pp. 368-383; Xu, D., Tsai, C.J., Nussinov, R., Hydrogen bonds and salt bridges across protein-protein interfaces (1997) Protein Eng, 10, pp. 999-1012; Kamanda Ngugi, D., Blom, J., Alam, I., Rashid, M., Ba-Alawi, W., Zhang, G., Hikmawan, T., Stingl, U., Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea (2015) ISME J, 9, pp. 396-411. , https://doi.org/10.1038/ismej.2014.137; Sonbol, S.A., Ferreira, A.J., Siam, R., Red Sea Atlantis II brine pool nitrilase with unique thermostability profile and heavy metal tolerance (2016) BMC Biotechnol, 16, p. 14. , https://doi.org/10.1186/s12896-016-0244-2; Corpet, F., Multiple sequence alignment with hierarchical clustering (1988) Nucleic Acids Res, 16, pp. 10881-10890; Mount, D.W., Using the Basic Local Alignment Search Tool (BLAST) (2007) CSH Protoc, 2007. , https://doi.org/10.1101/pdb.top17; Kalmbach, S., Manz, W., Wecke, J., Szewzyk, U., Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system (1999) Int J Syst Bacteriol, 49, pp. 769-777. , https://doi.org/10.1099/00207713-49-2-769; Fox, B., Walsh, C.T., Mercuric reductase Purification and characterization of a transposon-encoded flavoprotein containing an oxidationreduction-active disulfide (1982) J Biol Chem, 257, pp. 2498-2503; Ledwidge, R., Hong, B., Dotsch, V., Miller, S.M., NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols (2010) Biochemistry, 49, pp. 8988-8998. , https://doi.org/10.1021/bi100537f; Ledwidge, R., Patel, B., Dong, A., Fiedler, D., Falkowski, M., Zelikova, J., Summers, A.O., Miller, S.M., NmerA, the metal binding domain of mercuric ion reductase, removes Hg2 + from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions (2005) Biochemistry, 44, pp. 11402-11416. , https://doi.org/10.1021/bi050519d; Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Schwede, T., SWISSMODEL: modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res, 42, pp. W252-W258. , https://doi.org/10.1093/nar/gku340; Holec, P.V., Hackel, B.J., PyMOL360: multi-user gamepad control of molecular visualization software (2016) J Comput Chem, 37, pp. 2667-2669. , https://doi.org/10.1002/jcc.24489; Sarakatsannis, J.N., Duan, Y., Statistical characterization of salt bridges in proteins (2005) Proteins, 60, pp. 732-739. , https://doi.org/10.1002/prot.20549; Kumar, S., Nussinov, R., Relationship between ion pair geometries and electrostatic strengths in proteins (2002) Biophys J, 83, pp. 1595-1612. , https://doi.org/10.1016/S0006-3495(02)73929-5; Zhang, Y., Bond, C.S., Bailey, S., Cunningham, M.L., Fairlamb, A.H., Hunter, W.N., The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 � resolution (1996) Protein Sci, 5, pp. 52-61. , https://doi.org/10.1002/pro.5560050107 | |
dcterms.source | Scopus |