Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99m radionuclide: a potential molecular imaging probe for tumor diagnosis

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorSwidan M.M.
dc.contributor.authorKhowessah O.M.
dc.contributor.authorEl-Motaleb M.A.
dc.contributor.authorEl-Bary A.A.
dc.contributor.authorEl-Kolaly M.T.
dc.contributor.authorSakr T.M.
dc.contributor.otherLabeled Compounds Department
dc.contributor.otherHot Labs Center
dc.contributor.otherEgyptian Atomic Energy Authority
dc.contributor.otherPO13759
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharmaceutics and Industrial Pharmacy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherPO11562
dc.contributor.otherCairo
dc.contributor.otherEgypt; Radioactive Isotopes and Generator Department
dc.contributor.otherHot Labs Center
dc.contributor.otherEgyptian Atomic Energy Authority
dc.contributor.otherPO13759
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharmaceutical Chemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherModern Sciences and Arts University
dc.contributor.other6th October City
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:37Z
dc.date.available2020-01-09T20:40:37Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractBackground: The evolution of nanoparticles has gained prominence as platforms for developing diagnostic and/or therapeutic radiotracers. This study aims to develop a novel technique for fabricating a tumor diagnostic probe based on iron oxide nanoparticles excluding the utilization of chelating ligands. Methods: Tc-99m radionuclide was loaded into magnetic iron oxide nanoparticles platform (MIONPs) by sonication. 99mTc-encapsulated MIONPs were fully characterized concerning particles size, charge, radiochemical purity, encapsulation efficiency, in-vitro stability and cytotoxicity. These merits were biologically evaluated in normal and solid tumor bearing mice via different delivery approaches. Results: 99mTc-encapsulated MIONPs probe was synthesized with average particle size 24.08 7.9nm, hydrodynamic size 52nm, zeta potential -28mV, radiolabeling yield 96 0.83%, high in-vitro physiological stability, and appropriate cytotoxicity behavior. The in-vivo evaluation in solid tumor bearing mice revealed that the maximum tumor radioactivity accumulation (25.39 0.57, 36.40 0.59 and 72.61 0.82%ID/g) was accomplished at 60, 60 and 30min p.i. for intravenous, intravenous with physical magnet targeting and intratumoral delivery, respectively. The optimum T/NT ratios of 57.70, 65.00 and 87.48 were demonstrated at 60min post I.V., I.V. with physical magnet targeting and I.T. delivery, respectively. These chemical and biological characteristics of our prepared nano-probe demonstrate highly advanced merits over the previously reported chelator mediated radiolabeled nano-formulations which reported maximum tumor uptakes in the scope of 3.65 0.19 to 16.21 2.56%ID/g. Conclusion: Stabilized encapsulation of 99mTc radionuclide into MIONPs elucidates a novel strategy for developing an advanced nano-sized radiopharmaceutical for tumor diagnosis. [Figure not available: see fulltext.]. 2019, Springer Nature Switzerland AG.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=20710&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1007/s40199-019-00241-y
dc.identifier.doiPubMed ID 30706223
dc.identifier.issn15608115
dc.identifier.otherhttps://doi.org/10.1007/s40199-019-00241-y
dc.identifier.otherPubMed ID 30706223
dc.identifier.urihttps://t.ly/py7mO
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesDARU, Journal of Pharmaceutical Sciences
dc.relation.ispartofseries27
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectChelator free radiolabelingen_US
dc.subjectEncapsulationen_US
dc.subjectMagnetic iron oxide nanoparticlesen_US
dc.subjectTc-99m radionuclideen_US
dc.subjectTumor deliveryen_US
dc.subjectTumor diagnosisen_US
dc.subjectmagnetic iron oxide nanoparticleen_US
dc.subjectmagnetic nanoparticleen_US
dc.subjecttechnetium 99men_US
dc.subjectultrasmall superparamagnetic iron oxideen_US
dc.subjectunclassified drugen_US
dc.subjectferric ionen_US
dc.subjectferric oxideen_US
dc.subjectmagnetite nanoparticleen_US
dc.subjecttechnetiumen_US
dc.subjectTechnetium-99en_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectcell viabilityen_US
dc.subjectchemical parametersen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug cytotoxicityen_US
dc.subjectdrug delivery systemen_US
dc.subjectdrug stabilityen_US
dc.subjectencapsulation efficiencyen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjecthydrodynamic sizeen_US
dc.subjectin vitro studyen_US
dc.subjectin vivo studyen_US
dc.subjectisotope labelingen_US
dc.subjectmolecular imagingen_US
dc.subjectmouseen_US
dc.subjectnanoencapsulationen_US
dc.subjectnonhumanen_US
dc.subjectparticle chargeen_US
dc.subjectparticle sizeen_US
dc.subjectphysical parametersen_US
dc.subjectradiochemical purityen_US
dc.subjectsynthesisen_US
dc.subjecttumor diagnosisen_US
dc.subjectultrasounden_US
dc.subjectzeta potentialen_US
dc.subjectanimalen_US
dc.subjectcancer transplantationen_US
dc.subjectcell lineen_US
dc.subjectcell survivalen_US
dc.subjectchemistryen_US
dc.subjectdiagnostic imagingen_US
dc.subjectintravenous drug administrationen_US
dc.subjectAdministration, Intravenousen_US
dc.subjectAnimalsen_US
dc.subjectCell Lineen_US
dc.subjectCell Survivalen_US
dc.subjectFerric Compoundsen_US
dc.subjectHumansen_US
dc.subjectMagnetite Nanoparticlesen_US
dc.subjectMiceen_US
dc.subjectNeoplasm Transplantationen_US
dc.subjectParticle Sizeen_US
dc.subjectTechnetiumen_US
dc.titleIron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99m radionuclide: a potential molecular imaging probe for tumor diagnosisen_US
dc.typeArticleen_US
dcterms.isReferencedBySakr, T.M., Khowessah, O.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Swidan, M.M., I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery (2018) Eur J Pharm Sci, 122, pp. 239-245; Xing, Y., Zhao, J., Shi, X., Conti, P.S., Chen, K., Recent development of radiolabeled nanoparticles for PET imaging (2014) Austin J Nanomed Nanotechnol, 2 (2), p. 1016; De Barros, A.B., Tsourkas, A., Saboury, B., Cardoso, V.N., Alavi, A., Emerging role of radiolabeled nanoparticles as an effective diagnostic technique (2012) EJNMMI Res, 2 (1), p. 39; Welch, M.J., Hawker, C.J., Wooley, K.L., The advantages of nanoparticles for PET (2009) J Nucl Med, 50, pp. 1743-1746; Goel, S., Chen, F., Ehlerding, E.B., Cai, W., Intrinsically radiolabeled nanoparticles: an emerging paradigm (2014) Small, 10 (19), pp. 3825-3830; Zhao, J., Zhou, M., Li, C., Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy (2016) Cancer Nanotechnol, 7 (1), p. 9; Lamb, J.R., Holland, J.P., Advanced methods for radiolabelling nanomedicines for multi-modality nuclear/MR imaging (2018) J Nucl Med, 59 (3), pp. 382-389; Cisneros, B.T., Law, J.J., Matson, M.L., Azhdarinia, A., Sevick-Muraca, E.M., Wilson, L.J., Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging (2014) Nanomedicine, 9 (16), pp. 2499-2509; Guven, A., Rusakova, I.A., Lewis, M.T., Wilson, L.J., Cisplatin@ US-tube carbon nanocapsules for enhanced chemotherapeutic delivery (2012) Biomaterials, 33 (5), pp. 1455-1461; Abou, D.S., Pickett, J.E., Thorek, D.L.J., Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation (2015) Br J Radiol, 88, p. 1054; Maria, A.V.W., Margarida, M.C.O., Marcela, Z., Ariane, J.S.B., Mohammed, Q., Ralph, S.O., Nanoradiopharmaceuticals for nanomedicine: Building the future (2014) Recent Pat Nanomed, 4 (2), pp. 90-94; Ting, G., Chang, C.H., Wang, H.E., Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy (2009) Anticancer Res, 29, pp. 4107-4118; Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles (2016) Nanotechnol Sci Appl, 9, pp. 49-67; Lu, Q., Wei, D., Zhou, J., Xu, J., Cheng, J., Zhu, J., Preparation of polymer-functionalized iron oxide nanoparticles and their biomedical properties (2013) Chin J Chem, 31, pp. 40-406; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J Radioanal Nucl Chem, 303, pp. 531-539; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J Label Compd Radiopharm, 57, pp. 593-599; Sakr, T.M., Ibrahim, A.B., Fasih, T.W., Rashed, H.M., Preparation and biological profile of 99mTc-lidocaine as a cardioselective imaging agent using 99mTc eluted from 99Mo/99mTc generator based on Al-Mo gel (2017) J Radioanal Nucl Chem, 314 (3), pp. 2091-2098; Radovic, M., Calatayud, M.P., Goya, G.F., Ibarra, M.R., Antic, B., Spasojevic, V., Nikolic, N., Vranjes, D.S., Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy (2015) J Biomed Mater Res A, 103 (1), pp. 126-134; Liu, X.L., Fan, H.M., Yi, J.B., Yang, Y., Choo, E.S.G., Xue, J.M., Fana, D.D., Ding, J., Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents (2012) J Mater Chem B, 22, pp. 8235-8244; Sinha, N., Cifter, G., Sajo, E., Kumar, R., Sridhar, S., Nguyen, P.L., Cormack, R.A., Ngwa, W., Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters (2015) Int J Radiat Oncol Biol Phys, 91, pp. 385-392; Kong, L., Hu, J., Qin, D., Yan, P., Interaction of Ifosfamide-loaded superparamagnetic iron oxide nanoparticles with human serum albumin-a biophysical study (2015) J Pharm Innov, 10, pp. 13-20; Mondini, S., Cenedese, S., Marinoni, G., Molteni, G., Santo, N., Bianchi, C.L., Ponti, A., One-step synthesis and functionalization of hydroxyl-decorated magnetite nanoparticles (2008) J Colloid Interface Sci, 322, pp. 173-179; Khayatian, G., Hassanpoor, S., Azar, A.R.J., Mohebbi, S., Spectrophotometric determination of trace amounts of uranium(VI) using modified magnetic iron oxide nanoparticles in environmental and biological samples (2013) J Braz Chem Soc, 24, pp. 1808-1817; Mirshojaei, S.F., Ahmadi, A., Avila, E.M., Reynoso, M.O., Perez, H.R., Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer (2016) J Drug Target, 24 (2), pp. 91-101; Tsiapa, I., Efthimiadou, E.K., Fragogeorgi, E., Loudos, G., Varvarigou, A.D., Bouziotis, P., 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ?v?3-mediated tumor expression and feasibility for hyperthermia treatment (2014) J Colloid Interface Sci, 433, pp. 163-175; Banerjee, S., Pillai, M.R., Ramamoorthy, N., Evolution of Tc-99m in diagnostic radiopharmaceuticals (2001) Semin Nucl Med, 31, pp. 260-277; Matson, M.L., Villa, C.H., Ananta, J.S., Law, J.J., Scheinberg, D.A., Wilson, L.J., Encapsulation of ?-particle-emitting 225Ac3+ ions within carbon nanotubes (2015) J Nucl Med, 56 (6), pp. 897-900; Gonzales, M., Mitsumori, L.M., Kushleika, J.V., Rosenfeld, M.E., Krishnan, K.M., Cytotoxicity of iron oxide nanoparticles made from the thermal decom-position of organometallics and aqueous phase transfer with Pluronic F127 (2010) Contrast Media Mol Imaging, 5 (5), pp. 286-293; Hoskins, C., Cuschieri, A., Wang, L., The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism (2012) J Nanobiotechnology, 10, p. 15; Bao, A., Goins, B., Klipper, R., Negrete, G., Phillips, W.T., Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies (2004) J Pharmacol Exp Ther, 308, pp. 419-425; Amirkhizi, A.A., Banaem, L.M., Allaf, M.A., Sadjadi, S., Daha, F.J., Development of dendrimer encapsulated Radio-Ytterbium and biodistributionin tumor bearing mice (2016) IEEE Trans NanoBiosci, 15 (6), pp. 549-554; Psimadas, D., Bouziotis, P., Georgoulias, P., Valotassiou, V., Tsotakos, T., Loudos, G., Radiolabeling approaches of nanoparticles with 99mTc (2013) Contrast Media Mol Imaging, 8, pp. 333-339; Zhang, G., Yang, Z., Lu, W., Zhang, R., Huang, Q., Tian, M., Li, L., Li, C., Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice (2009) Biomaterials, 30 (10), pp. 1928-1936; Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C., Cancer nanomedicine: progress, challenges and opportunities (2017) Nat Rev Cancer, 17, pp. 20-37; Thakor, A.S., Gambhir, S.S., Nanooncology: the future of cancer diagnosis and therapy (2013) CA Cancer J Clin, 63, pp. 395-418; Matsumura, Y., Maeda, H., A new concept for macromolecular therapeutics in cancerchemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs (1986) Cancer Res, 46 (12), pp. 6387-6392; Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting (2001) Adv Enzym Regul, 41, pp. 189-207; Folkman, J., What is the evidence that tumors are angiogenesis dependent (1990) J Natl Cancer Inst, 82 (1), p. 4; Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease (1995) Nat Med, 1 (1), p. 27; Folkman, J., Tumor angiogenesis-therapeutic implications (1971) N Engl J Med, 285 (21), pp. 1182-1186; Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., Jain, R.K., Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment (1998) Proc Natl Acad Sci U S A, 95 (8), pp. 4607-4612; Venturoli, D., Rippe, B., Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability (2005) Am J Physiol Renal Physiol, 288 (4), pp. F605-F613; Konno, T., Maeda, H., Iwai, K., Maki, S., Tashiro, S., Uchida, M., Miyauchi, Y., Selective targeting of anticancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast-medium (1984) Cancer, 54 (11), pp. 2367-2374; Moghimi, S.M., Szebeni, J., Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties (2003) Prog Lipid Res, 42 (6), pp. 463-478; Moghimi, S.M., Hunter, A.C., Murray, J.C., Long-circulating and target-specific nanoparticles: theory to practice (2001) Pharmacol Rev, 53 (2), pp. 283-318; Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., Muller, R.H., Stealth� corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption (2000) Colloids Surf B Biointerfaces, 18 (3-4), pp. 301-313; Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A., Xiao, Y., Gong, S., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging (2011) Biomaterials, 32 (17), pp. 4151-4160; Morales-Avila, E., Ferro-Flores, G., Ocampo-Garcia, B.E., Leon-Rodriguez, L.M., Santos-Cuevas, C.L., Garcia-Becerra, R., Medina, L.A., Gomez-Olivan, L., Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor ?(v)?(3) expression (2011) Bioconjug Chem, 22, pp. 913-922; Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice (2007) Nat Nanotechnol, 2, pp. 47-52; Lahooti, A., Sarkar, S., Saligheh-Rad, H., Gholami, A., Nosrati, S., Muller, R.N., Laurent, S., Yousefnia, H., PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent: a biodistribution study (2017) J Radioanal Nucl Chem, 311, pp. 769-774; Natarajan, A., Xiong, C.Y., Gruettner, C., DeNardo, G.L., DeNardo, S.J., Development of multivalent radioimmunonanoparticles for cancer imaging and therapy (2008) Cancer Biother Radiopharm, 23, pp. 82-91; Hu, G., Lijowski, M., Zhang, H., Partlow, K.C., Caruthers, S.D., Kiefer, G., Gulyas, G., Lanza, G.M., Imaging of Vx-2 rabbit tumors with alpha (nu) beta3-integrin-targeted 111In nanoparticles (2007) Int J Cancer, 120 (9), pp. 1951-1957; Tsoukalas, C., Psimadas, D., Kastis, G.A., Koutoulidis, V., Harris, A.L., Paravatou-Petsotas, M., Karageorgou, M., Bouziotis, P., A novel metal-based imaging probe for targeted dual-modality SPECT/MR imaging of angiogenesis (2018) Front Chem, 6, p. 224
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
40199_2019_Article_241.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description: