Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Naggar M.E.
dc.contributor.authorEl-Rafie M.H.
dc.contributor.authorEl-sheikh M.A.
dc.contributor.authorEl-Feky G.S.
dc.contributor.authorHebeish A.
dc.contributor.otherTextile Research Division
dc.contributor.otherNational Research Centre (Affiliation ID: 60014618)
dc.contributor.other33 Behouth St.
dc.contributor.otherDokki
dc.contributor.otherGiza
dc.contributor.otherEgypt; Pharmaceutical Technology Department Centre (Affiliation ID: 60014618)
dc.contributor.otherNational Research Centre
dc.contributor.otherEgypt; Pharmaceutics Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:45Z
dc.date.available2020-01-09T20:41:45Z
dc.date.issued2015
dc.descriptionScopus
dc.description.abstractThe current research work focuses on the medical application of the cost-effective cross-linked starch nanoparticles, for the transdermal delivery using Diclofenac sodium (DS) as a model drug. The prepared DS-cross-linked starch nanoparticles were synthesized using nanoprecipitation technique at different concentrations of sodium tripolyphosphate (STPP) in the presence of Tween 80 as a surfactant. The resultant cross-linked starch nanoparticles loaded with DS were characterized using world-class facilities such as TEM, DLS, FT-IR, XRD, and DSc. The efficiency of DS loading was also evaluated via entrapment efficiency as well as in vitro release and histopathological study on rat skin. The optimum nanoparticles formulation selected by the JMP� software was the formula that composed of 5% maize starch, 57.7mg DS and 0.5% STPP and 0.4% Tween 80, with particle diameter of about 21.04nm, polydispersity index of 0.2 and zeta potential of -35.3mV. It is also worth noting that this selected formula shows an average entrapment efficiency of 95.01 and sustained DS release up to 6h. The histophathological studies using the best formula on rat skin advocate the use of designed transdermal DS loaded cross-linked starch nanoparticles as it is safe and non-irritant to rat skin.The overall results indicate that, the starch nanoparticles could be considered as a good carrier for DS drug regarding the enhancement in its controlled release and successful permeation, thus, offering a promising nanoparticulate system for the transdermal delivery non-steroidal anti-inflammatory drug (NSAID). � 2015 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=17544&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ijbiomac.2015.09.005
dc.identifier.doiPubMed ID 26358550
dc.identifier.issn1418130
dc.identifier.otherhttps://doi.org/10.1016/j.ijbiomac.2015.09.005
dc.identifier.otherPubMed ID 26358550
dc.identifier.urihttps://t.ly/6xwkY
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesInternational Journal of Biological Macromolecules
dc.relation.ispartofseries81
dc.subjectCross-linked starch nanoparticlesen_US
dc.subjectDrug Deliveryen_US
dc.subjectHistopathological studyen_US
dc.subjectIn vitro releaseen_US
dc.subjectNanoprecipitationen_US
dc.subjectdiclofenacen_US
dc.subjectnanoparticleen_US
dc.subjectpolysorbate 80en_US
dc.subjectstarchen_US
dc.subjecttripolyphosphateen_US
dc.subjectdrugen_US
dc.subjectdrug carrieren_US
dc.subjectnanoparticleen_US
dc.subjectnonsteroid antiinflammatory agenten_US
dc.subjectstarchen_US
dc.subjectanimal experimenten_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectcross linkingen_US
dc.subjectdifferential scanning calorimetryen_US
dc.subjectencapsulationen_US
dc.subjectfemaleen_US
dc.subjecthistopathologyen_US
dc.subjectinfrared spectroscopyen_US
dc.subjectlight scatteringen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectraten_US
dc.subjectskin irritationen_US
dc.subjectsustained drug releaseen_US
dc.subjecttransdermal drug delivery systemen_US
dc.subjecttransmission electron microscopyen_US
dc.subjectX ray diffractionen_US
dc.subjectzeta potentialen_US
dc.subjectanimalen_US
dc.subjectchemistryen_US
dc.subjectcytologyen_US
dc.subjectdrug delivery systemen_US
dc.subjectdrug effectsen_US
dc.subjectdrug formulationen_US
dc.subjectdrug releaseen_US
dc.subjectkineticsen_US
dc.subjectskinen_US
dc.subjectultrastructureen_US
dc.subjectAnimalsen_US
dc.subjectAnti-Inflammatory Agents, Non-Steroidalen_US
dc.subjectCalorimetry, Differential Scanningen_US
dc.subjectDrug Carriersen_US
dc.subjectDrug Compoundingen_US
dc.subjectDrug Delivery Systemsen_US
dc.subjectDrug Liberationen_US
dc.subjectKineticsen_US
dc.subjectNanoparticlesen_US
dc.subjectParticle Sizeen_US
dc.subjectPharmaceutical Preparationsen_US
dc.subjectRatsen_US
dc.subjectSkinen_US
dc.subjectSpectroscopy, Fourier Transform Infrareden_US
dc.subjectStarchen_US
dc.subjectX-Ray Diffractionen_US
dc.titleSynthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticlesen_US
dc.typeArticleen_US
dcterms.isReferencedByXinming, L., Yingde, C., Lloyd, A.W., Mikhalovsky, S.V., Sandeman, S.R., Howel, C.A., Liewen, L., (2008) Cont. Lens Anterior Eye, 31 (2), pp. 57-64; Ding, S., (1998) Pharm. Sci. Technol. Today, 1 (8), pp. 328-335; Nagarwal, R.C., Kant, S., Singh, P.N., Maiti, P., Pandit, J.K., (2009) J. Control. Release, 136 (1), pp. 2-13; Gurny, R., Boye, T., Ibrahim, H., (1985) J. Control. Release, 2, pp. 353-361; Subramani, K., Ahmed, W., Nanoparticulate drug delivery systems for oral cancer treatment (2012) Emerging Nanotechnologies in Dentistry, pp. 333-345. , William Andrew Publishing, Boston, (Chapter 19); Mandal, B., Alexander, K.S., Riga, A.T., (2010) J. Pharm. Sci., 13 (4), pp. 510-523; Nagarsenker, M.S., Londhe, V.Y., Nadkarni, G.D., (1999) Int. J. Pharm., 190 (1), pp. 63-71; Callegan, M.C., Hobden, J.A., O'Callaghan, R.J., Hill, J.M., (1995) Int. J. Pharm., 123 (2), pp. 173-179; Unterman, S.R., Rootman, D.S., Hill, J.M., Parelman, J.J., Thompson, H.W., Kaufman, H.E., (1988) J. Cataract Refract. Surg., 14 (5), pp. 500-504; Friess, W., Collagen - biomaterial for drug delivery (1998) Eur. J. Pharm. Biopharm., 45 (2), pp. 113-136; Baeyens, V., Kaltsatos, V., Boisram�, B., Varesio, E., Veuthey, J.L., Fathi, M., Balant, L.P., Gurny, R., (1998) J. Control. Release, 52, pp. 215-220; Vandamme, T.F., Brobeck, L., (2005) J. Control. Release, 102 (1), pp. 23-38; Sahu, B., Das, M., (2013) Appl. Nanosci., pp. 1-9; Jain, K.K., (2005) Drug Discov. Today, 10 (21), pp. 1435-1442; El-Rafie, M.H., El-Naggar, M.E., Ramadan, M.A., Fouda, M.M.G., Al-Deyab, S.S., Hebeish, A., (2011) Carbohydr. Polym., 86, pp. 630-635; Armarego, W.L.F., Chai, C., Nanomaterials and nanotechnology (2013) Purification of Laboratory Chemicals, pp. 908-942. , Butterworth-Heinemann, Boston, (Chapter 8); Hebeish, A., El-Rafie, M.H., EL-Sheikh, M.A., Seleem, A.A., EL-Naggar, M.E., (2014) Int. J. Biol. Macromol., 65, pp. 509-515; Bagal, M.V., Gogate, P.R., (2014) Ultrason Sonochem. Sonochem, 21 (3), pp. 1035-1043; Gonz�lez-Rodr�guez, M.L., Holgado, M.A., S�nchez-Lafuente, C., Rabasco, A.M., Fini, A., (2002) Int. J. Pharm, 232, pp. 225-234; Agnihotri, S.M., Vavia, P.R., (2009) Nanomedicine, 5 (1), pp. 90-95; Shi, A., Li, D., Wang, L., Li, B., Adhikari, B., (2011) Carbohydr. Polym, 83 (4), pp. 1604-1610; Li, B., Wang, L., Li, D., Chiu, Y.L., Zhang, Z., Shi, J., Chen, X.D., Mao, Z., (2009) J. Food Eng, 92 (3), pp. 255-260; Woo, K., Seib, P.A., (1997) Carbohydr. Polym, 33 (4), pp. 263-271; Higuchi, T., (1961) J. Pharm. Sci, 50 (10), pp. 874-875; Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N., Benita, S., (1989) Int. J. Pharm., 55, pp. R1-R4; Hebeish, A., El-Rafie, M.H., EL-Sheikh, M.A., El-Naggar, M.E., (2014) J. Inorg. Organomet. Polym. Mater., 24 (3), pp. 515-524; Bhosale, U., Kusum, D.V., Jain, N., (2011) J. Young Pharm., 3 (4), pp. 275-283; Wang, Q., Wu, J., Wang, W., Wang, A., (2011) J. Biomater. Nanobiotechnol., 2, pp. 250-257; Alonso, J., Nanoparticulate drug carrier technology (1996) Microparticulate Systems for the Delivery of Proteins and Vaccines, pp. 203-242. , Marcel Dekker, New York; Saravanan, M., Bhaskar, K., Maharajan, G., Pillai, K.S., (2004) Int. J. Pharm., 283, pp. 71-82; El-Feky, G.S., El-Rafie, M.H., El-Sheikh, M.A., El-Naggar, M.E., Hebeish, A., (2015) J. Nanomed. Nanotechnol., 6 (1), p. 254; Pignatello, R., Ricupero, N., Bucolo, C., Maugeri, F., Maltese, A., Puglisi, G., (2006) AAPS PharmSciTech, 7 (1), p. E27; Gurny, R., Peppas, N.A., Harrington, D.D., Banker, G.S., (1981) Drug Dev. Ind. Pharm., 7, pp. 1-25; Magdassi, S., Margulis, K., (2009) Nanomedicine, 5, pp. 274-281; Singh, J., Kaur, L., McCarthy, O.J., (2007) Food Hydrocoll., 21 (1), pp. 1-22; Rodr�guez-Mar�n, M.L., N��ez-Santiago, C., Wang, Y.-J., Bello-P�rez, L.A., (2010) St�rke, 62 (10), pp. 530-537; El-Feky, G.S., Zayed, G., Farrag, A.R.H., (2013) Int. J. Pharm. Pharm. Sci., 5, pp. 213-219; Siepmann, J., Peppas, N.A., (2001) Adv. Drug Deliv. Rev., 48 (2-3), pp. 139-157; Puttipipatkhachorn, S., Pongjanyakul, T., Priprem, A., (2005) Int. J. Pharm., 293, pp. 51-62
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: