Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El Hawary S.S. | |
dc.contributor.author | Zaghloul S.S. | |
dc.contributor.author | El Halawany A.M. | |
dc.contributor.author | El Bishbishy M.H. | |
dc.contributor.other | Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo 11562 | |
dc.contributor.other | Egypt; Department of Pharmacognosy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Modern Sciences and Arts University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Faculty of Pharmacy | |
dc.contributor.other | King Abdulaziz University | |
dc.contributor.other | Jeddah | |
dc.contributor.other | Saudi Arabia | |
dc.date.accessioned | 2020-01-09T20:42:21Z | |
dc.date.available | 2020-01-09T20:42:21Z | |
dc.date.issued | 2013 | |
dc.description | Scopus | |
dc.description.abstract | The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. ?-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies. � 2013 Mary Ann Liebert, Inc., and Korean Society of Food Science and Nutrition. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=15970&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1089/jmf.2013.2814 | |
dc.identifier.doi | PubMed ID 24180553 | |
dc.identifier.issn | 1096620X | |
dc.identifier.other | https://doi.org/10.1089/jmf.2013.2814 | |
dc.identifier.other | PubMed ID 24180553 | |
dc.identifier.uri | https://t.ly/dONJD | |
dc.language.iso | English | en_US |
dc.relation.ispartofseries | Journal of Medicinal Food | |
dc.relation.ispartofseries | 16 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | ?-curcumene8Carya illinoinensis | en_US |
dc.subject | Anti-bacterial | en_US |
dc.subject | Anti-fungal | en_US |
dc.subject | Germacrene D | en_US |
dc.subject | alpha acoradiene | en_US |
dc.subject | alpha ylangene | en_US |
dc.subject | amphotericin B | en_US |
dc.subject | antibiotic agent | en_US |
dc.subject | aromandrene | en_US |
dc.subject | beta acoradiene | en_US |
dc.subject | beta curcumene | en_US |
dc.subject | beta farnesene | en_US |
dc.subject | beta pinene | en_US |
dc.subject | bourbonene | en_US |
dc.subject | cedrene | en_US |
dc.subject | cineole | en_US |
dc.subject | copaene | en_US |
dc.subject | delta cadinene | en_US |
dc.subject | essential oil | en_US |
dc.subject | gamma bisabolene | en_US |
dc.subject | gamma gurjunene | en_US |
dc.subject | gamma muurolene | en_US |
dc.subject | germacrene D | en_US |
dc.subject | guaiol | en_US |
dc.subject | limonene | en_US |
dc.subject | longifolene | en_US |
dc.subject | pinene | en_US |
dc.subject | salicylic acid methyl ester | en_US |
dc.subject | terpene derivative | en_US |
dc.subject | terpenoid | en_US |
dc.subject | terpenoid derivative | en_US |
dc.subject | tetracycline | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | unindexed drug | en_US |
dc.subject | viridiflorol | en_US |
dc.subject | animal experiment | en_US |
dc.subject | antibacterial activity | en_US |
dc.subject | antifungal activity | en_US |
dc.subject | antimicrobial activity | en_US |
dc.subject | article | en_US |
dc.subject | Aspergillus flavus | en_US |
dc.subject | Bacillus subtilis | en_US |
dc.subject | bacterial strain | en_US |
dc.subject | Candida albicans | en_US |
dc.subject | chemical analysis | en_US |
dc.subject | chemical composition | en_US |
dc.subject | controlled study | en_US |
dc.subject | cultivar | en_US |
dc.subject | disk diffusion | en_US |
dc.subject | drug determination | en_US |
dc.subject | drug potency | en_US |
dc.subject | drug screening | en_US |
dc.subject | Egypt | en_US |
dc.subject | Enterococcus faecalis | en_US |
dc.subject | Escherichia coli | en_US |
dc.subject | fungal strain | en_US |
dc.subject | genotype | en_US |
dc.subject | growth inhibition | en_US |
dc.subject | hydrodistillation | en_US |
dc.subject | in vivo study | en_US |
dc.subject | mass fragmentography | en_US |
dc.subject | Neisseria gonorrhoeae | en_US |
dc.subject | nonhuman | en_US |
dc.subject | pecan | en_US |
dc.subject | plant growth | en_US |
dc.subject | plant leaf | en_US |
dc.subject | priority journal | en_US |
dc.subject | Pseudomonas aeruginosa | en_US |
dc.subject | Staphylococcus aureus | en_US |
dc.subject | Animals | en_US |
dc.subject | Anti-Bacterial Agents | en_US |
dc.subject | Antifungal Agents | en_US |
dc.subject | Aspergillus | en_US |
dc.subject | Bacteria | en_US |
dc.subject | Carya | en_US |
dc.subject | Egypt | en_US |
dc.subject | Gas Chromatography-Mass Spectrometry | en_US |
dc.subject | Humans | en_US |
dc.subject | Microbial Sensitivity Tests | en_US |
dc.subject | Oils, Volatile | en_US |
dc.subject | Plant Leaves | en_US |
dc.subject | Sesquiterpenes, Germacrane | en_US |
dc.subject | Species Specificity | en_US |
dc.title | Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Tepe, B., Daferera, D., Sokmen, M., Polissiou, M., Sokmen, A., In vitro antimicrobial and antioxidant activities of the essential oilsand various extracts of Thymus eigii (2004) J Agric Food Chem, 52, pp. 1132-1137; Wei, A., Shibamoto, T., Medicinal activities of essential oils: Role in disease prevention (2010) Bioactive Foods in Promoting Health: Fruits and Vegetables, pp. 59-70. , 10th edition (Watson RR, Preedy VR, eds.). Elsevier, San Diego; Pereira, J.A., Oliveira, I., Sousa, A., Ferreira, I.C.F.R., Bento, A., Estevinho, L., Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars (2008) Food Chem Toxicol, 46, pp. 2103-2111; Cal, K., Skin penetration of terpenes from essential oils and topical vehicles (2006) Planta Med, 72, pp. 311-316; Germplasm Resources Information Network., , www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?9253, Carya illinoinensis (Wangenh.) K. Koch. United States Department of Agriculture. (accessed May 2012); National Pecan Shellers Association, , www.ilovepecans.org/history.html, History of Pecans (accessed May 2012); Collingwood, G.H., Brush, W.D., Butches, D., (1964), Knowing Your Trees, 2nd edition. American Forestry Association, Washington, DC; Amin, W.M.A., Abdel Rahman, E.H., Chemical and biological study of the essential oil of Carya illinoensis (Wangenh) K Koch Family Juglandaceae (2007) Bull Fac Pharm Cairo Univ, 45, pp. 83-91; (1984) The Egyptian Pharmacopoeia, English Text, pp. 31-33. , 3rd ed. General Organization for Government Printing House, Cairo; Adams, R.P., (2004) Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, , Allured Publishing Corporation Carol Stream, IL; Bauer, W., Kirby, W.M., Sherris, C., Turck, M., Antibiotic susceptibility testing by a standardized single disk method (1966) Am J Clin Path, 45, pp. 493-496; Pfaller, M.A., Burmeister, L., Bartlett, M.A., Rinaldi, M.G., Multicenter evaluation of four methods of yeast inoculum preparation (1988) J Clin Microbiol, 26, pp. 1437-1441; (1997) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, , National Committee for Clinical Laboratory Standards Approved standard M7-A3. National Committee for Clinical Laboratory Standards, Villanova, PA; (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-Forming Filamentous Fungi, Proposed Standard M38-A., , National Committee for Clinical Laboratory Standards National Committee for Clinical Laboratory Standards, Wayne, PA; Mantey, I., Hill, R., Foster, A., Wilson, S., Wade, J., Edmonds, M., Infection of foot ulcers with Staphylococcus aureus associated with increased mortality in diabetic patients (2000) Commun Dis Public Health, 3, pp. 288-290; Knobloch, K., Weigand, H., Weis, N., Schwarm, H.M., Vigenschow, H., Action of terpenoids on energy metabolism (1986) Progress in Essential Oil Research, , (Brunke EJ, ed.).16th International Symposium on Essential Oils, De Gruyter, Berlin; Sikkema, J., De Bont, J.A.M., Poolman, B., Interactions of cyclic hydrocarbons with biological membranes (1994) J Biol Chem, 269, pp. 8022-8028; Denyer, S.P., Hugo, W.B., Biocide-induced damage to the bacterial cytoplasmic membrane. In: Mechanisms of Action of Chemical Biocides (1991) The Society for Applied Bacteriology, pp. 171-188. , (Denyer SP, Hugo WB, eds) Oxford Blackwell Scientific Publication, Oxford; Sol, C., Becerra, J., Flores, C., Robledo, J., Silva, M., Antibacterial and antifungal terpenes from Pilgerodendron uviferum (D Don) Florin (2004) J Chil Chem Soc, 49, pp. 157-161; Rahman, M.M., Garvey, M.I., Piddock, L.J.V., Gibbon, S., Antibacterial terpenes from the oleo-resin of Commiphora molmol (Engl.) (2008) Phytother Res, 22, pp. 1356-1360; Haznedaroglu, M.Z., Karabay, N.U., Zeybek, U., Antibacterial activity of Salvia tomentosa essential oil (2001) Fitoterapia, 72, pp. 829-831; Sahin, F., Gulluc, M., Daferera, D., Sokmen, A., Sokmen, M., Polissiou, M., Agar, G., Ozer, H., Biological activities of the essential oils and methanol extract of Origanum vulgare ssp vulgare in the eastern Anatolia region of Turkey (2004) Food Control, 15, pp. 549-557; Ngassapa, O., Runyoro, D.K.B., Harvala, E., Chinou, I.B., Composition and antimicrobial activity of essential oils of two populations of Tanzanian Lippia javanica (Burm F.) Spreng (Verbenaceae) (2003) Flavour Fragr J, 18, pp. 221-224; Knoblock, K., Pauli, A., Iberi, B., Weis, N., Weigand, H., Antibacterial activity and antifungal properties of essential oil components (1998) J Essent Oil Res, 1, pp. 119-128; Burt, S., Essential oils; Their antimicrobial properties and potential applications in foods - A review (2004) Int J Food Microbiol, 94, pp. 223-253; Abad, M.J., Ansuategui, M., Bermejo, P., Active antifungal substances from natural sources (2007) ARKIVOC, pp. 116-145; French, R.C., The bio-regulatory action of flavor compounds on fungal spores and other propagules (1985) Ann Rev Phytopatol, 23, pp. 173-199 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: