QbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium Chitosan Nebulizable Microspheres: Optimization and Characterization

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorElkady O.A.
dc.contributor.authorTadros M.I.
dc.contributor.authorEl-laithy H.M.
dc.contributor.otherDepartment of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.other11787
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherKasr El-Aini Street
dc.contributor.otherCairo
dc.contributor.other11562
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:29Z
dc.date.available2020-01-09T20:40:29Z
dc.date.issued2020
dc.descriptionScopus
dc.description.abstractRisedronate sodium (RS) is a potent inhibitor of bone resorption, having an extreme poor permeability and limited oral bioavailability (0.62%). RS should be orally administered under fasting conditions while keeping in an upright posture for at least 30 min to diminish common gastroesophageal injuries. To surmount such limitations, novel risedronate chitosan (RS-CS) crosslinker-free nebulizable microspheres were developed adopting the quality by design (QbD) approach and risk assessment (RA) thinking. RS:CS ratio, surfactant (Pluronic F127) concentration, homogenization duration, speed, and temperature were identified using Ishikawa diagrams as the highest formulation and process risk factors affecting the critical quality attributes (CQAs), average particle size (PS), and entrapment efficiency (EE%). The risk factors were screened using the Plackett Burman design, and the levels of the most significant factors were optimized using a multilevel factorial design to explore the optimized system with the least PS, maximum EE%, and a prolonged drug release profile. The optimized system (B6) was developed at a RS:CS ratio of 1:7, a surfactant concentration of 2% (w/v), and a homogenization speed of 14,000 rpm. It revealed good correlation with QbD theoretical prediction, where positively charged (47.9 - 3.39 mV) discrete, spherical microspheres (3.47 - 0.16 ?m) having a high EE% (94.58 - 0.19%) and prolonged RS release over 12 h (Q12 h, 89.70 - 0.64%) were achieved. In vivo lung deposition after intratracheal instillation of B6 confirmed the delivery of high RS percentage to rat lung tissues (87 - 3.54%) and its persistence for 24 h. This investigation demonstrated the effectiveness of QbD philosophy in developing RS-CS crosslinker-free nebulizable microspheres. 2019, American Association of Pharmaceutical Scientists.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19374&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1208/s12249-019-1561-2
dc.identifier.doiPubMed ID 31807950
dc.identifier.issn15309932
dc.identifier.otherhttps://doi.org/10.1208/s12249-019-1561-2
dc.identifier.otherPubMed ID 31807950
dc.identifier.urihttps://link.springer.com/article/10.1208/s12249-019-1561-2
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.ispartofseriesAAPS PharmSciTech
dc.relation.ispartofseries21
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectchitosanen_US
dc.subjectcrosslinker-freeen_US
dc.subjectmicrospheresen_US
dc.subjectquality by design (QbD)en_US
dc.subjectrisedronate sodiumen_US
dc.subjectcesium ionen_US
dc.subjectchitosanen_US
dc.subjectmicrosphereen_US
dc.subjectrisedronic aciden_US
dc.subjectsurfactanten_US
dc.subjectanimal experimenten_US
dc.subjectanimal tissueen_US
dc.subjectArticleen_US
dc.subjectdrug releaseen_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectgelationen_US
dc.subjectin vivo studyen_US
dc.subjectlungen_US
dc.subjectlung alveolusen_US
dc.subjectmaleen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectpriority journalen_US
dc.subjectraten_US
dc.subjectrisk assessmenten_US
dc.subjectrisk factoren_US
dc.subjectstatic electricityen_US
dc.subjecttemperatureen_US
dc.subjectX ray diffractionen_US
dc.subjectzeta potentialen_US
dc.titleQbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium Chitosan Nebulizable Microspheres: Optimization and Characterizationen_US
dc.typeArticleen_US
dcterms.isReferencedByPilcer, G., Wauthoz, N., Amighi, K., Lactose characteristics and the generation of the aerosol (2012) Adv Drug Deliv Rev, 64, pp. 233-256. , COI: 1:CAS:528:DC%2BC38Xkt1GjtLY%3D, PID: 21616107, Elsevier; Tan, Y., Yang, Z., Pan, X., Chen, M., Feng, M., Wang, L., Stability and aerosolization of pressurized metered dose inhalers containing thymopentin nanoparticles produced using a bottom-up process (2012) Int J Pharm, 427, pp. 385-392. , COI: 1:CAS:528:DC%2BC38XivFWrtLk%3D, PID: 22343132, Elsevier; Kaialy, W., Ticehurst, M., Nokhodchi, A., Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate (2012) Int J Pharm, 423, pp. 184-194. , COI: 1:CAS:528:DC%2BC38XhslCltb4%3D, PID: 22197772, Elsevier; Wu, L., Miao, X., Shan, Z., Huang, Y., Li, L., Pan, X., Studies on the spray dried lactose as carrier for dry powder inhalation (2014) Asian J Pharm Sci, 9, pp. 336-341. , Elsevier; Fleisch, H., Prospective use of bisphosphonates in osteoporosis (1993) J Clin Endocrinol Metab, 76, pp. 1397-1398. , COI: 1:STN:280:DyaK3s3ntlyhsQ%3D%3D, PID: 8501141, Oxford University Press; Ueno, M., Maeno, T., Nishimura, S., Ogata, F., Masubuchi, H., Hara, K., Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages (2015) Nat Commun, 6, p. 6332. , COI: 1:CAS:528:DC%2BC2MXosVCksrs%3D, PID: 25757189, Nature Publishing Group; Panderi, I., Taxiarchi, E., Pistos, C., Kalogria, E., Vonaparti, A., Panderi, I., Insights into the mechanism of separation of bisphosphonates by zwitterionic hydrophilic interaction liquid chromatography: application to the quantitation of risedronate in pharmaceuticals (2019) Separations, 6, p. 6. , COI: 1:CAS:528:DC%2BC1MXhsFOjsL7I, Multidisciplinary Digital Publishing Institute; Guzman, M.L., Soria, E.A., Laino, C., Manzo, R.H., Olivera, M.E., Reduced food interaction and enhanced gastrointestinal tolerability of a new system based on risedronate complexed with Eudragit E100: mechanistic approaches from in vitro and in vivo studies (2016) Eur J Pharm Biopharm, 107, pp. 263-272. , COI: 1:CAS:528:DC%2BC28Xht1ymsL3J, PID: 27418392, Elsevier; Peter, C.P., Handt, L.K., Smith, S.M., Esophageal irritation due to alendronate sodium tablets: Possible mechanisms (1998) Dig Dis Sci, 43, pp. 1998-2002. , COI: 1:CAS:528:DyaK1cXmsV2rsr8%3D, PID: 9753265; Nasr, M., Awad, G.A.S., Mansour, S., Taha, I., Shamy A Al, Mortada ND. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting (2011) Eur J Pharm Biopharm, 79, pp. 601-611. , COI: 1:CAS:528:DC%2BC3MXht1ylsbrM, PID: 21827854, Elsevier; Papapetrou, P.D., Bisphosphonate-associated adverse events (2009) Hormones (Athens), 8, pp. 96-110; Nasr, M., Taha, I., Hathout, R.M., Suitability of liposomal carriers for systemic delivery of risedronate using the pulmonary route (2013) Drug Deliv, 20, pp. 311-318. , COI: 1:CAS:528:DC%2BC3sXhsFynsrjE, PID: 24079347, Taylor & Francis; Ezra, A., Golomb, G., Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption (2000) Adv Drug Deliv Rev, 42, pp. 175-195. , COI: 1:CAS:528:DC%2BD3cXlvV2hsLs%3D, PID: 10963835, Elsevier; Blumentals, W.A., Harris, S.T., Cole, R.E., Huang, L., Silverman, S.L., Risk of severe gastrointestinal events in women treated with monthly ibandronate or weekly alendronate and risedronate (2009) Ann Pharmacother, 43, pp. 577-585. , COI: 1:CAS:528:DC%2BD1MXltFequr4%3D, PID: 19318598, SAGE PublicationsSage CA: Los Angeles, CA; Fazil, M., Hassan, M.Q., Baboota, S., Ali, J., Biodegradable intranasal nanoparticulate drug delivery system of risedronate sodium for osteoporosis (2016) Drug Deliv, 23, pp. 2428-2438. , COI: 1:CAS:528:DC%2BC28Xhs1yrs73I, PID: 25625496, Taylor & Francis; Pazianas, M., Abrahamsen, B., Ferrari, S., Russell, R.G.G., Eliminating the need for fasting with oral administration of bisphosphonates (2013) Ther Clin Risk Manag, 9, pp. 395-402. , PID: 24204155, Dove Press; Kim, J.S., Jang, S.W., Son, M., Kim, B.M., Kang, M.J., Enteric-coated tablet of risedronate sodium in combination with phytic acid, a natural chelating agent, for improved oral bioavailability (2016) Eur J Pharm Sci, 82, pp. 45-51. , PID: 26594027; Nam, S.H., Jeong, J.-H., Che, X., Lim, K.-E., Nam, H., Park, J.-S., Topically administered risedronate shows powerful anti-osteoporosis effect in ovariectomized mouse model (2012) Bone., 50, pp. 149-155. , COI: 1:CAS:528:DC%2BC38Xht1Cgtg%3D%3D, PID: 22036912; Park, J.-H., Jin, H.-E., Kim, D.-D., Chung, S.-J., Shim, W.-S., Shim, C.-K., Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation (2013) Int J Pharm, 441, pp. 562-569. , COI: 1:CAS:528:DC%2BC38XhslCntL%2FL, PID: 23142421, Elsevier; Oyarzun-Ampuero, F.A., Brea, J., Loza, M.I., Torres, D., Alonso, M.J., Chitosan�hyaluronic acid nanoparticles loaded with heparin for the treatmen
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Elkady2019_Article_QbDApproachForNovelCrosslinker.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description: