QbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium Chitosan Nebulizable Microspheres: Optimization and Characterization
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Elkady O.A. | |
dc.contributor.author | Tadros M.I. | |
dc.contributor.author | El-laithy H.M. | |
dc.contributor.other | Department of Pharmaceutics | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | 11787 | |
dc.contributor.other | Egypt; Department of Pharmaceutics and Industrial Pharmacy | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr El-Aini Street | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:29Z | |
dc.date.available | 2020-01-09T20:40:29Z | |
dc.date.issued | 2020 | |
dc.description | Scopus | |
dc.description.abstract | Risedronate sodium (RS) is a potent inhibitor of bone resorption, having an extreme poor permeability and limited oral bioavailability (0.62%). RS should be orally administered under fasting conditions while keeping in an upright posture for at least 30 min to diminish common gastroesophageal injuries. To surmount such limitations, novel risedronate chitosan (RS-CS) crosslinker-free nebulizable microspheres were developed adopting the quality by design (QbD) approach and risk assessment (RA) thinking. RS:CS ratio, surfactant (Pluronic F127) concentration, homogenization duration, speed, and temperature were identified using Ishikawa diagrams as the highest formulation and process risk factors affecting the critical quality attributes (CQAs), average particle size (PS), and entrapment efficiency (EE%). The risk factors were screened using the Plackett Burman design, and the levels of the most significant factors were optimized using a multilevel factorial design to explore the optimized system with the least PS, maximum EE%, and a prolonged drug release profile. The optimized system (B6) was developed at a RS:CS ratio of 1:7, a surfactant concentration of 2% (w/v), and a homogenization speed of 14,000 rpm. It revealed good correlation with QbD theoretical prediction, where positively charged (47.9 - 3.39 mV) discrete, spherical microspheres (3.47 - 0.16 ?m) having a high EE% (94.58 - 0.19%) and prolonged RS release over 12 h (Q12 h, 89.70 - 0.64%) were achieved. In vivo lung deposition after intratracheal instillation of B6 confirmed the delivery of high RS percentage to rat lung tissues (87 - 3.54%) and its persistence for 24 h. This investigation demonstrated the effectiveness of QbD philosophy in developing RS-CS crosslinker-free nebulizable microspheres. 2019, American Association of Pharmaceutical Scientists. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19374&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1208/s12249-019-1561-2 | |
dc.identifier.doi | PubMed ID 31807950 | |
dc.identifier.issn | 15309932 | |
dc.identifier.other | https://doi.org/10.1208/s12249-019-1561-2 | |
dc.identifier.other | PubMed ID 31807950 | |
dc.identifier.uri | https://link.springer.com/article/10.1208/s12249-019-1561-2 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | AAPS PharmSciTech | |
dc.relation.ispartofseries | 21 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | chitosan | en_US |
dc.subject | crosslinker-free | en_US |
dc.subject | microspheres | en_US |
dc.subject | quality by design (QbD) | en_US |
dc.subject | risedronate sodium | en_US |
dc.subject | cesium ion | en_US |
dc.subject | chitosan | en_US |
dc.subject | microsphere | en_US |
dc.subject | risedronic acid | en_US |
dc.subject | surfactant | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal tissue | en_US |
dc.subject | Article | en_US |
dc.subject | drug release | en_US |
dc.subject | Fourier transform infrared spectroscopy | en_US |
dc.subject | gelation | en_US |
dc.subject | in vivo study | en_US |
dc.subject | lung | en_US |
dc.subject | lung alveolus | en_US |
dc.subject | male | en_US |
dc.subject | nonhuman | en_US |
dc.subject | particle size | en_US |
dc.subject | priority journal | en_US |
dc.subject | rat | en_US |
dc.subject | risk assessment | en_US |
dc.subject | risk factor | en_US |
dc.subject | static electricity | en_US |
dc.subject | temperature | en_US |
dc.subject | X ray diffraction | en_US |
dc.subject | zeta potential | en_US |
dc.title | QbD Approach for Novel Crosslinker-Free Ionotropic Gelation of Risedronate Sodium Chitosan Nebulizable Microspheres: Optimization and Characterization | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Pilcer, G., Wauthoz, N., Amighi, K., Lactose characteristics and the generation of the aerosol (2012) Adv Drug Deliv Rev, 64, pp. 233-256. , COI: 1:CAS:528:DC%2BC38Xkt1GjtLY%3D, PID: 21616107, Elsevier; Tan, Y., Yang, Z., Pan, X., Chen, M., Feng, M., Wang, L., Stability and aerosolization of pressurized metered dose inhalers containing thymopentin nanoparticles produced using a bottom-up process (2012) Int J Pharm, 427, pp. 385-392. , COI: 1:CAS:528:DC%2BC38XivFWrtLk%3D, PID: 22343132, Elsevier; Kaialy, W., Ticehurst, M., Nokhodchi, A., Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate (2012) Int J Pharm, 423, pp. 184-194. , COI: 1:CAS:528:DC%2BC38XhslCltb4%3D, PID: 22197772, Elsevier; Wu, L., Miao, X., Shan, Z., Huang, Y., Li, L., Pan, X., Studies on the spray dried lactose as carrier for dry powder inhalation (2014) Asian J Pharm Sci, 9, pp. 336-341. , Elsevier; Fleisch, H., Prospective use of bisphosphonates in osteoporosis (1993) J Clin Endocrinol Metab, 76, pp. 1397-1398. , COI: 1:STN:280:DyaK3s3ntlyhsQ%3D%3D, PID: 8501141, Oxford University Press; Ueno, M., Maeno, T., Nishimura, S., Ogata, F., Masubuchi, H., Hara, K., Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages (2015) Nat Commun, 6, p. 6332. , COI: 1:CAS:528:DC%2BC2MXosVCksrs%3D, PID: 25757189, Nature Publishing Group; Panderi, I., Taxiarchi, E., Pistos, C., Kalogria, E., Vonaparti, A., Panderi, I., Insights into the mechanism of separation of bisphosphonates by zwitterionic hydrophilic interaction liquid chromatography: application to the quantitation of risedronate in pharmaceuticals (2019) Separations, 6, p. 6. , COI: 1:CAS:528:DC%2BC1MXhsFOjsL7I, Multidisciplinary Digital Publishing Institute; Guzman, M.L., Soria, E.A., Laino, C., Manzo, R.H., Olivera, M.E., Reduced food interaction and enhanced gastrointestinal tolerability of a new system based on risedronate complexed with Eudragit E100: mechanistic approaches from in vitro and in vivo studies (2016) Eur J Pharm Biopharm, 107, pp. 263-272. , COI: 1:CAS:528:DC%2BC28Xht1ymsL3J, PID: 27418392, Elsevier; Peter, C.P., Handt, L.K., Smith, S.M., Esophageal irritation due to alendronate sodium tablets: Possible mechanisms (1998) Dig Dis Sci, 43, pp. 1998-2002. , COI: 1:CAS:528:DyaK1cXmsV2rsr8%3D, PID: 9753265; Nasr, M., Awad, G.A.S., Mansour, S., Taha, I., Shamy A Al, Mortada ND. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting (2011) Eur J Pharm Biopharm, 79, pp. 601-611. , COI: 1:CAS:528:DC%2BC3MXht1ylsbrM, PID: 21827854, Elsevier; Papapetrou, P.D., Bisphosphonate-associated adverse events (2009) Hormones (Athens), 8, pp. 96-110; Nasr, M., Taha, I., Hathout, R.M., Suitability of liposomal carriers for systemic delivery of risedronate using the pulmonary route (2013) Drug Deliv, 20, pp. 311-318. , COI: 1:CAS:528:DC%2BC3sXhsFynsrjE, PID: 24079347, Taylor & Francis; Ezra, A., Golomb, G., Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption (2000) Adv Drug Deliv Rev, 42, pp. 175-195. , COI: 1:CAS:528:DC%2BD3cXlvV2hsLs%3D, PID: 10963835, Elsevier; Blumentals, W.A., Harris, S.T., Cole, R.E., Huang, L., Silverman, S.L., Risk of severe gastrointestinal events in women treated with monthly ibandronate or weekly alendronate and risedronate (2009) Ann Pharmacother, 43, pp. 577-585. , COI: 1:CAS:528:DC%2BD1MXltFequr4%3D, PID: 19318598, SAGE PublicationsSage CA: Los Angeles, CA; Fazil, M., Hassan, M.Q., Baboota, S., Ali, J., Biodegradable intranasal nanoparticulate drug delivery system of risedronate sodium for osteoporosis (2016) Drug Deliv, 23, pp. 2428-2438. , COI: 1:CAS:528:DC%2BC28Xhs1yrs73I, PID: 25625496, Taylor & Francis; Pazianas, M., Abrahamsen, B., Ferrari, S., Russell, R.G.G., Eliminating the need for fasting with oral administration of bisphosphonates (2013) Ther Clin Risk Manag, 9, pp. 395-402. , PID: 24204155, Dove Press; Kim, J.S., Jang, S.W., Son, M., Kim, B.M., Kang, M.J., Enteric-coated tablet of risedronate sodium in combination with phytic acid, a natural chelating agent, for improved oral bioavailability (2016) Eur J Pharm Sci, 82, pp. 45-51. , PID: 26594027; Nam, S.H., Jeong, J.-H., Che, X., Lim, K.-E., Nam, H., Park, J.-S., Topically administered risedronate shows powerful anti-osteoporosis effect in ovariectomized mouse model (2012) Bone., 50, pp. 149-155. , COI: 1:CAS:528:DC%2BC38Xht1Cgtg%3D%3D, PID: 22036912; Park, J.-H., Jin, H.-E., Kim, D.-D., Chung, S.-J., Shim, W.-S., Shim, C.-K., Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation (2013) Int J Pharm, 441, pp. 562-569. , COI: 1:CAS:528:DC%2BC38XhslCntL%2FL, PID: 23142421, Elsevier; Oyarzun-Ampuero, F.A., Brea, J., Loza, M.I., Torres, D., Alonso, M.J., Chitosan�hyaluronic acid nanoparticles loaded with heparin for the treatmen | |
dcterms.source | Scopus |