The role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAmr K.S.
dc.contributor.authorBayoumi F.S.
dc.contributor.authorElgengehy F.T.
dc.contributor.authorAbdallah S.O.
dc.contributor.authorAhmed H.H.
dc.contributor.authorEissa E.
dc.contributor.otherHead of Medical Molecular Genetics Department
dc.contributor.otherNational Research Centre
dc.contributor.otherCairo
dc.contributor.otherEgypt; Immunogenetics Department
dc.contributor.otherNational Research Centre
dc.contributor.otherCairo
dc.contributor.otherEgypt; Head of Microbiology and Immunology Department
dc.contributor.otherMSA University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Rheumatology and Rehabilitation
dc.contributor.otherFaculty of Medicine
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Science
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Head of Medical Molecular Genetics Department
dc.contributor.otherNational Research Centre
dc.contributor.otherEl Buhouth St.
dc.contributor.otherCairo
dc.contributor.otherDokki 12622
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:33Z
dc.date.available2020-01-09T20:41:33Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractSystemic lupus erythematosus (SLE) is an autoimmune disease characterized by familial aggregation and genetic predisposition. MicroRNAs (MiRNAs) serve as critical biomarkers in lupus patients because of their aberrant expression in different SLE stages. The study aimed to investigate the correlation of miR-31 and miR-21 with IL-2 in SLE patients as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients. Quantitative RT-PCR is carried out to estimate the expressions of miR-31 and miR-21, and IL-2 levels were determined using ELISA in plasma of 40 patients with SLE, 20 of their first-degree relatives and 20 healthy controls. The study also determined the systemic lupus erythematosus disease activity index (SLEDAI) score and proteinuria in SLE patients. The results revealed that miR-31 was lower expressed, while miR-21 was high expressed in SLE patients compared to their first-degree relatives and controls. MiR-31 was negatively correlated with SLEDAI and proteinuria in lupus patients, while miR-21 showed positive correlation with them. Also we found that there is a significant positive correlation between miR-31 and IL-2 in SLE patients, while miR-21 was negatively correlated with IL-2 level in patients. In conclusion, the study disclosed a significant association between miR-31 and miR-21 expression with IL-2 level in SLE patients. The regulatory biomarkers of miR-31 and miR-21 might have an impact on regulating IL-2 pathway expression and in turn on the activation of T lymphocytes in SLE. � 2016, Springer-Verlag Berlin Heidelberg.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19773&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1007/s00296-016-3550-z
dc.identifier.doiPubMed ID 27510529
dc.identifier.issn1728172
dc.identifier.otherhttps://doi.org/10.1007/s00296-016-3550-z
dc.identifier.otherPubMed ID 27510529
dc.identifier.urihttps://t.ly/ZE6V9
dc.language.isoEnglishen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofseriesRheumatology International
dc.relation.ispartofseries36
dc.subjectIL-2en_US
dc.subjectMiR-21en_US
dc.subjectMiR-31en_US
dc.subjectSLEen_US
dc.subjectbiological markeren_US
dc.subjectinterleukin 2en_US
dc.subjectmicroRNA 21en_US
dc.subjectmicroRNA 31en_US
dc.subjectbiological markeren_US
dc.subjectinterleukin 2en_US
dc.subjectmicroRNAen_US
dc.subjectMIRN21 microRNA, humanen_US
dc.subjectMIRN31 microRNA, humanen_US
dc.subjectadulten_US
dc.subjectArticleen_US
dc.subjectclinical articleen_US
dc.subjectcontrolled studyen_US
dc.subjectcorrelation analysisen_US
dc.subjectEgyptianen_US
dc.subjectenzyme linked immunosorbent assayen_US
dc.subjectfemaleen_US
dc.subjectfirst-degree relativeen_US
dc.subjectgene expressionen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectmaleen_US
dc.subjectpriority journalen_US
dc.subjectproteinuriaen_US
dc.subjectquantitative analysisen_US
dc.subjectreal time polymerase chain reactionen_US
dc.subjectSLEDAIen_US
dc.subjectsystemic lupus erythematosusen_US
dc.subjectT lymphocyte activationen_US
dc.subjectadolescenten_US
dc.subjectblooden_US
dc.subjectEgypten_US
dc.subjectgenetic association studyen_US
dc.subjectgeneticsen_US
dc.subjectimmunologyen_US
dc.subjectmetabolismen_US
dc.subjectmiddle ageden_US
dc.subjectseverity of illness indexen_US
dc.subjectsystemic lupus erythematosusen_US
dc.subjectT lymphocyteen_US
dc.subjectyoung adulten_US
dc.subjectAdolescenten_US
dc.subjectAdulten_US
dc.subjectBiomarkersen_US
dc.subjectEgypten_US
dc.subjectFemaleen_US
dc.subjectGenetic Association Studiesen_US
dc.subjectHumansen_US
dc.subjectInterleukin-2en_US
dc.subjectLupus Erythematosus, Systemicen_US
dc.subjectMaleen_US
dc.subjectMicroRNAsen_US
dc.subjectMiddle Ageden_US
dc.subjectSeverity of Illness Indexen_US
dc.subjectT-Lymphocytesen_US
dc.subjectYoung Adulten_US
dc.titleThe role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patientsen_US
dc.typeArticleen_US
dcterms.isReferencedByRamos, P.S., Brown, E.E., Kimberly, R.P., Langefeld, C.D., Genetic factors predisposing to systemic lupus erythematosus and lupus nephritis (2010) Semin Nephrol, 30 (2), pp. 164-176. , COI: 1:CAS:528:DC%2BC3cXlvVKjsr0%3D, PID: 20347645; Qu, B., Shen, N., MiRNAs in the pathogenesis of systemic lupus erythematosus (2015) Int J Mol Sci, 16 (5), pp. 9557-9572. , COI: 1:CAS:528:DC%2BC2MXptlGmur4%3D, PID: 25927578; Xiao, G., Zuo, X., Epigenetics in systemic lupus erythematosus (2016) Biomed Rep, 4 (2), pp. 135-139. , PID: 26893827; Hochberg, M.C., The application of genetic epidemiology to systemic lupus erythematosus (1987) J Rheumatol, 14, pp. 867-869. , COI: 1:STN:280:DyaL1c7hvVKltA%3D%3D, PID: 3480955; Alarc�n-Segovia, D., Alarc�n-Riquelme, M.E., Cardiel, M.H., Caeiro, F., Massardo, L., Villa, A.R., Pons-Estel, B.A., GrupoLatinoamericano de Estudio del Lupus Eritematoso (GLADEL), Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort (2005) Arthritis Rheum, 52 (4), pp. 1138-1147. , PID: 15818688; Masi, A.T., Kaslow, R.A., Sex effects in systemic lupus erythematosus: a clue to pathogenesis (1978) Arthritis Rheum, 21, pp. 480-484. , COI: 1:STN:280:DyaE1c7os1yhsw%3D%3D, PID: 656163; Lu, L.J., Wallace, D.J., Ishimori, M.L., Scofield, R.H., Weisman, M.H., Male systemic lupus erythematosus: a review of sex disparities in this disease (2010) Lupus, 19, pp. 119-129. , PID: 19946032; Murphy, G., Isenberg, D., Effect of gender on clinical presentation in systemic lupus erythematosus (2013) Rheumatology, 52, pp. 2108-2115. , PID: 23641038; Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function (2004) Cell, 116, pp. 281-297. , COI: 1:CAS:528:DC%2BD2cXhtVals7o%3D, PID: 14744438; Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., Bartel, D.P., The impact of microRNAs on protein output (2008) Nature, 455, pp. 64-71. , COI: 1:CAS:528:DC%2BD1cXhtVKrsbjF, PID: 18668037; Mehta, A., Baltimore, D., MicroRNAs as regulatory elements in immune system logic (2016) Nat Rev Immunol, 16 (5), pp. 279-294. , COI: 1:CAS:528:DC%2BC28XmvVGntb0%3D, PID: 27121651; Stypi?ska, B., Paradowska-Gorycka, A., Cytokines and MicroRNAs as candidate biomarkers for systemic lupus erythematosus (2015) Int J Mol Sci, 16 (10), pp. 24194-24218. , PID: 26473848; Husakova, M., MicroRNAs in the key events of systemic lupus erythematosus pathogenesis (2016) Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, , PID: 27003314; Mart�nez-Ramos, R., Garc�a-Lozano, J.R., Lucena, J.M., Castillo-Palma, M.J., Garc�a-Hern�ndez, F., Rodr�guez, M.C., N��ez-Rold�n, A., Gonz�lez-Escribano, M.F., Differential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus (2014) Lupus, 23 (4), pp. 353-359. , PID: 24509687; Liu, Y.J., Fan, W.J., Bai, J.Z., MicroRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus (2015) Eur Rev Med Pharmacol Sci, 19 (20), pp. 3838-3842. , PID: 26531267; Tang, Y., Luo, X., Cui, H., Ni, Z., Yuan, M., Guo, Y., MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins (2009) Arthritis Rheum, 60 (4), pp. 1065-1075. , COI: 1:CAS:528:DC%2BD1MXltFemsr8%3D, PID: 19333922; Hai-yan, W., Yang, L., Mei-hong, C., Hui, Z., Expression of MicroRNA-146a in peripheral blood mononuclear cells in patients with systemic lupus erythematosus (2011) Zhongguo Yi XueKeXue Yuan XueBao, 33 (2), pp. 185-188; Pan, W., Zhu, S., Yuan, M., Cui, H., Wang, L., Luo, X., Li, J., Shen, N., MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyl transferase 1 (2010) J Immunol, 184 (12), pp. 6773-6781. , COI: 1:CAS:528:DC%2BC3cXmvFejsrw%3D, PID: 20483747; Fan, W., Liang, D., Tang, Y., Qu, B., Cui, H., Luo, X., Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus (2012) Arthritis Rheum, 64 (11), pp. 3715-3725. , COI: 1:CAS:528:DC%2BC38Xhs1Shtr%2FO, PID: 22736314; Garchow, B., Kiriakidou, M., MicroRNA-21 deficiency protects from lupus-like autoimmunity in the chronic graft-versus-host disease model of systemic lupus erythematosus (2016) Clin Immunol, 162, pp. 100-106. , COI: 1:CAS:528:DC%2BC2MXhvFGmur%2FO, PID: 26631756; Lieberman, L.A., Tsokos, G.C., The IL-2 defect in systemic lupus erythematosus disease has an expansive effect on host immunity (2010) J Biomed Biotechnol, 2010, p. 740619. , PID: 20625413; Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R., Farrar, M.A., IL-2 receptor and ?-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells (2007) J Immunol, 178, pp. 280-290. , COI: 1:CAS:528:DC%2BD2sXnvVWj, PID: 17182565; Liao, W., Lin, J.X., Leonard, W.J., Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy (2013) Immunity, 38, pp. 13-25. , COI: 1:CAS:528:DC%2BC3sXhsVaqtr0%3D, PID: 23352221; Schorle, H., Holtschke, T., H�nig, T., Schimpl, A., Horak, I., Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting (1991) Nature, 352 (6336), pp. 621-624. , COI: 1:CAS:528:DyaK3MXltlekurY%3D, PID: 1830926; Horak, I., Immunodeficiency in IL-2-knockout mice (1995) Clin Immunol Immunopathol, 76 (3), pp. S172-S173. , COI: 1:CAS:528:DyaK2MXptFOns70%3D, PID: 7554463; Horwitz, D.A., The clinical significance of decreased T cell interleukin-2 production in systemic lupus erythematosus: connecting historical dots (2010) Arthritis Rheum, 62 (8), pp. 2185-2187. , COI: 1:CAS:528:DC%2BC3cXhtFOiu7rL, PID: 20506258; Tan, E.M., Cohen, A.S., Fries, J.F., Masi, A.T., McShane, D.J., Rothfield, N.F., Schaller, J.G., Winchester, R.J., The 1982 revised criteria for the classification of systemic lupus erythematosus (1982) Arthritis Rheum, 25, pp. 1271-1277. , COI: 1:STN:280:DyaL3s%2FkvVCmtA%3D%3D, PID: 7138600; Bombardier, C., Gladman, D.D., Urowitz, M.B., Caron, D., Chang, D.H., Derivation of the SLEDAI: a disease activity index for lupus patients (1992) Arthritis Rheum, 35, pp. 630-640. , COI: 1:STN:280:DyaK383oslWrtg%3D%3D, PID: 1599520; Firestein, G.S., (2008) Kelley�s textbook of rheumatology, , W. B Saunders, Philadelphia; Chafin, C.B., Reilly, C.M., MicroRNAs implicated in the immunopathogenesis of lupus nephritis (2013) Clin Dev Immunol, 2013, p. 430239. , PID: 23983769; Yan, S., Yim, L.Y., Lu, L., Lau, C.S., Chan, V.S., MicroRNA regulation in systemic lupus erythematosus pathogenesis (2014) Immune Netw, 14 (3), pp. 138-148. , PID: 24999310; Miao, C.G., Yang, Y.Y., He, X., Huang, C., Huang, Y., Zhang, L., Lv, X.W., Li, J., The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus (2013) Cell Signal, 25 (9), pp. 1828-1836. , COI: 1:CAS:528:DC%2BC3sXhtVOqsr3P, PID: 23707525; Fan, W., Liang, D., Tang, Y., Qu, B., Cui, H., Luo, X., Huang, X., Shen, N., Expression of miR-31 in peripheral blood of patients with systemic lupus erythematosus (2011) J Shanghai Jiaotong Univ, 31, pp. 39-42; Song, Y.C., Tang, S.J., Lee, T.P., Hung, W.C., Lin, S.C., Tsai, C.Y., Ng, W.V., Sun, K.H., Reversing interleukin-2 inhibition by anti�double-stranded DNA autoantibody ameliorates glomerulonephritis in MRL-lpr/lprmice (2010) Arthritis Rheum, 62, pp. 2401-2411. , COI: 1:CAS:528:DC%2BC3cXhtFOiu7fN, PID: 20506162; Tsokos, G.C., Disease pathogenesis: systemic lupus erythematosus (2011) N Engl J Med, 365, pp. 2110-2121. , COI: 1:CAS:528:DC%2BC3MXhs1Sku7rP, PID: 22129255; Mellor-Pita, S., Citores, M.J., Castejon, R., Tutor-Ureta, P., Yebra-Bango, M., Andreu, J.L., Vargas, J.A., Decrease of regulatory T cells in patients with systemic lupus erythematosus (2006) Ann Rheum Dis, 65, pp. 553-554. , COI: 1:STN:280:DC%2BD287ktFKjuw%3D%3D, PID: 16531555; Wong, C.K., Lit, L.C., Tam, L.S., Li, E.K., Wong, P.T., Lam, C.W., Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in autoimmunity (2008) Clin Immunol, 127, pp. 385-393. , COI: 1:CAS:528:DC%2BD1cXmt12qsrs%3D, PID: 18373953; Webster, K.E., Walters, S., Kohler, R., Mrkvan, T., Boyman, O., Surh, C.D., Grey, S.T., Sprent, J., In vivo expansion of Treg cells with IL-2 mAb complexes; induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression (2009) J Exp Med, 206, pp. 751-760. , COI: 1:CAS:528:DC%2BD1MXkvVSiurs%3D, PID: 19332874; Sgouroudis, E., Kornete, M., Piccirillo, C.A., IL-2 production by dendritic cells promotes Foxp3�+�regulatory T-cell expansion in autoimmune resistant NOD congenic mice (2011) Autoimmunity, 44, pp. 406-414. , COI: 1:CAS:528:DC%2BC3MXos1Kisr0%3D, PID: 21244339; Matsuoka, K., Koreth, J., Kim, H.T., Bascug, G., McDonough, S., Kawano, Y., Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease (2013) Sci Transl Med, 5, p. 179ra43. , PID: 23552371; Mizui, M., Koga, T., Lieberman, L.A., Beltran, J., Yoshida, N., Johnson, M.C., Tisch, R., Tsokos, G.C., Interleukin-2 protects lupus-prone mice from multiple end organ damage by limiting CD4?CD8�Interleukin-17-producing T cells (2014) J Immunol, 193, pp. 2168-2177. , COI: 1:CAS:528:DC%2BC2cXhtlOnu7jJ, PID: 25063876; Xue, F., Li, H., Zhang, J., Lu, J., Xia, Y., Xia, Q., MiR-31 regulates interleukin 2 and kinase suppressor of ras 2 during T cell activation (2013) Genes Immun, 14 (2), pp. 127-131. , COI: 1:CAS:528:DC%2BC3sXjslGmtLs%3D, PID: 23303246; Helms, W.S., Jeffrey, J.L., Holmes, D.A., Townsend, M.B., Clipstone, N.A., Su, L., Modulation of NFAT-dependent gene expression by the RhoA signaling pathway in T cells (2007) J Leukoc Biol, 82, pp. 361-369. , COI: 1:CAS:528:DC%2BD2sXos12ru7o%3D, PID: 17502338; Crispin, J.C., Tsokos, G.C., Transcriptional regulation of IL-2 in health and autoimmunity (2009) Autoimmun Rev, 8 (3), pp. 190-195. , COI: 1:CAS:528:DC%2BD1MXmtVylt7o%3D, PID: 18723131; Shaw, J.P., Utz, P.J., Durand, D.B., Toole, J.J., Emmel, E.A., Crabtree, G.R., Identification of a putative regulator of early T cell activation genes (1988) Science, 241, pp. 202-205. , COI: 1:CAS:528:DyaL1cXls1Cls7k%3D, PID: 3260404; Rooney, J.W., Sun, Y.L., Glimcher, L.H., Hoey, T., Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation (1995) Mol Cell Biol, 15, pp. 6299-6310. , COI: 1:CAS:528:DyaK2MXovVyks7o%3D, PID: 7565783; Chow, C.W., Rincon, M., Davis, R.J., Requirement for transcription factor NFAT in interleukin-2 expression (1999) Mol Cell Biol, 19, pp. 2300-2307. , COI: 1:CAS:528:DyaK1MXhsFCjsrg%3D, PID: 10022916; Garchow, B.G., BartulosEncinas, O., Leung, Y.T., Tsao, P.Y., Eisenberg, R.A., Caricchio, R., Obad, S., Kiriakidou, M., Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice (2011) EMBO Mol Med, 3 (10), pp. 605-615. , COI: 1:CAS:528:DC%2BC3MXhtlersL%2FF, PID: 21882343; Stagakis, E., Bertsias, G., Verginis, P., Nakou, M., Hatziapostolou, M., Kritikos, H., Iliopoulos, D., Boumpas, D.T., Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression (2011) Ann Rheum Dis, 70 (8), pp. 1496-1506. , COI: 1:CAS:528:DC%2BC3MXhtV2ru7zE, PID: 21602271; Rouas, R., Fayyad-Kazan, H., El Zein, N., Lewalle, P., Roth�, F., Simion, A., Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression (2009) Eur J Immunol, 39 (6), pp. 1608-1618. , COI: 1:CAS:528:DC%2BD1MXntFCitbc%3D, PID: 19408243; Chen, C., Rowell, E.A., Thomas, R.M., Hancock, W.W., Wells, A.D., Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation (2006) J Biol Chem, 281, pp. 36828-36834. , COI: 1:CAS:528:DC%2BD28Xht1eltrbN, PID: 17028180; Murugaiyan, G., da Cunha, A.P., Ajay, A.K., Joller, N., Garo, L.P., Kumaradevan, S., Yosef, N., Weiner, H.L., MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis (2015) J Clin Invest., 125 (3), pp. 1069-1080. , PID: 25642768
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Amr2016_Article_TheRoleOfMicroRNA-31AndMicroRN.pdf
Size:
855.53 KB
Format:
Adobe Portable Document Format
Description: