The role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Amr K.S. | |
dc.contributor.author | Bayoumi F.S. | |
dc.contributor.author | Elgengehy F.T. | |
dc.contributor.author | Abdallah S.O. | |
dc.contributor.author | Ahmed H.H. | |
dc.contributor.author | Eissa E. | |
dc.contributor.other | Head of Medical Molecular Genetics Department | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Immunogenetics Department | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Head of Microbiology and Immunology Department | |
dc.contributor.other | MSA University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Department of Rheumatology and Rehabilitation | |
dc.contributor.other | Faculty of Medicine | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Faculty of Science | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Head of Medical Molecular Genetics Department | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | El Buhouth St. | |
dc.contributor.other | Cairo | |
dc.contributor.other | Dokki 12622 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:33Z | |
dc.date.available | 2020-01-09T20:41:33Z | |
dc.date.issued | 2016 | |
dc.description | Scopus | |
dc.description.abstract | Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by familial aggregation and genetic predisposition. MicroRNAs (MiRNAs) serve as critical biomarkers in lupus patients because of their aberrant expression in different SLE stages. The study aimed to investigate the correlation of miR-31 and miR-21 with IL-2 in SLE patients as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients. Quantitative RT-PCR is carried out to estimate the expressions of miR-31 and miR-21, and IL-2 levels were determined using ELISA in plasma of 40 patients with SLE, 20 of their first-degree relatives and 20 healthy controls. The study also determined the systemic lupus erythematosus disease activity index (SLEDAI) score and proteinuria in SLE patients. The results revealed that miR-31 was lower expressed, while miR-21 was high expressed in SLE patients compared to their first-degree relatives and controls. MiR-31 was negatively correlated with SLEDAI and proteinuria in lupus patients, while miR-21 showed positive correlation with them. Also we found that there is a significant positive correlation between miR-31 and IL-2 in SLE patients, while miR-21 was negatively correlated with IL-2 level in patients. In conclusion, the study disclosed a significant association between miR-31 and miR-21 expression with IL-2 level in SLE patients. The regulatory biomarkers of miR-31 and miR-21 might have an impact on regulating IL-2 pathway expression and in turn on the activation of T lymphocytes in SLE. � 2016, Springer-Verlag Berlin Heidelberg. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19773&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1007/s00296-016-3550-z | |
dc.identifier.doi | PubMed ID 27510529 | |
dc.identifier.issn | 1728172 | |
dc.identifier.other | https://doi.org/10.1007/s00296-016-3550-z | |
dc.identifier.other | PubMed ID 27510529 | |
dc.identifier.uri | https://t.ly/ZE6V9 | |
dc.language.iso | English | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartofseries | Rheumatology International | |
dc.relation.ispartofseries | 36 | |
dc.subject | IL-2 | en_US |
dc.subject | MiR-21 | en_US |
dc.subject | MiR-31 | en_US |
dc.subject | SLE | en_US |
dc.subject | biological marker | en_US |
dc.subject | interleukin 2 | en_US |
dc.subject | microRNA 21 | en_US |
dc.subject | microRNA 31 | en_US |
dc.subject | biological marker | en_US |
dc.subject | interleukin 2 | en_US |
dc.subject | microRNA | en_US |
dc.subject | MIRN21 microRNA, human | en_US |
dc.subject | MIRN31 microRNA, human | en_US |
dc.subject | adult | en_US |
dc.subject | Article | en_US |
dc.subject | clinical article | en_US |
dc.subject | controlled study | en_US |
dc.subject | correlation analysis | en_US |
dc.subject | Egyptian | en_US |
dc.subject | enzyme linked immunosorbent assay | en_US |
dc.subject | female | en_US |
dc.subject | first-degree relative | en_US |
dc.subject | gene expression | en_US |
dc.subject | human | en_US |
dc.subject | human cell | en_US |
dc.subject | male | en_US |
dc.subject | priority journal | en_US |
dc.subject | proteinuria | en_US |
dc.subject | quantitative analysis | en_US |
dc.subject | real time polymerase chain reaction | en_US |
dc.subject | SLEDAI | en_US |
dc.subject | systemic lupus erythematosus | en_US |
dc.subject | T lymphocyte activation | en_US |
dc.subject | adolescent | en_US |
dc.subject | blood | en_US |
dc.subject | Egypt | en_US |
dc.subject | genetic association study | en_US |
dc.subject | genetics | en_US |
dc.subject | immunology | en_US |
dc.subject | metabolism | en_US |
dc.subject | middle aged | en_US |
dc.subject | severity of illness index | en_US |
dc.subject | systemic lupus erythematosus | en_US |
dc.subject | T lymphocyte | en_US |
dc.subject | young adult | en_US |
dc.subject | Adolescent | en_US |
dc.subject | Adult | en_US |
dc.subject | Biomarkers | en_US |
dc.subject | Egypt | en_US |
dc.subject | Female | en_US |
dc.subject | Genetic Association Studies | en_US |
dc.subject | Humans | en_US |
dc.subject | Interleukin-2 | en_US |
dc.subject | Lupus Erythematosus, Systemic | en_US |
dc.subject | Male | en_US |
dc.subject | MicroRNAs | en_US |
dc.subject | Middle Aged | en_US |
dc.subject | Severity of Illness Index | en_US |
dc.subject | T-Lymphocytes | en_US |
dc.subject | Young Adult | en_US |
dc.title | The role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Ramos, P.S., Brown, E.E., Kimberly, R.P., Langefeld, C.D., Genetic factors predisposing to systemic lupus erythematosus and lupus nephritis (2010) Semin Nephrol, 30 (2), pp. 164-176. , COI: 1:CAS:528:DC%2BC3cXlvVKjsr0%3D, PID: 20347645; Qu, B., Shen, N., MiRNAs in the pathogenesis of systemic lupus erythematosus (2015) Int J Mol Sci, 16 (5), pp. 9557-9572. , COI: 1:CAS:528:DC%2BC2MXptlGmur4%3D, PID: 25927578; Xiao, G., Zuo, X., Epigenetics in systemic lupus erythematosus (2016) Biomed Rep, 4 (2), pp. 135-139. , PID: 26893827; Hochberg, M.C., The application of genetic epidemiology to systemic lupus erythematosus (1987) J Rheumatol, 14, pp. 867-869. , COI: 1:STN:280:DyaL1c7hvVKltA%3D%3D, PID: 3480955; Alarc�n-Segovia, D., Alarc�n-Riquelme, M.E., Cardiel, M.H., Caeiro, F., Massardo, L., Villa, A.R., Pons-Estel, B.A., GrupoLatinoamericano de Estudio del Lupus Eritematoso (GLADEL), Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort (2005) Arthritis Rheum, 52 (4), pp. 1138-1147. , PID: 15818688; Masi, A.T., Kaslow, R.A., Sex effects in systemic lupus erythematosus: a clue to pathogenesis (1978) Arthritis Rheum, 21, pp. 480-484. , COI: 1:STN:280:DyaE1c7os1yhsw%3D%3D, PID: 656163; Lu, L.J., Wallace, D.J., Ishimori, M.L., Scofield, R.H., Weisman, M.H., Male systemic lupus erythematosus: a review of sex disparities in this disease (2010) Lupus, 19, pp. 119-129. , PID: 19946032; Murphy, G., Isenberg, D., Effect of gender on clinical presentation in systemic lupus erythematosus (2013) Rheumatology, 52, pp. 2108-2115. , PID: 23641038; Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function (2004) Cell, 116, pp. 281-297. , COI: 1:CAS:528:DC%2BD2cXhtVals7o%3D, PID: 14744438; Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., Bartel, D.P., The impact of microRNAs on protein output (2008) Nature, 455, pp. 64-71. , COI: 1:CAS:528:DC%2BD1cXhtVKrsbjF, PID: 18668037; Mehta, A., Baltimore, D., MicroRNAs as regulatory elements in immune system logic (2016) Nat Rev Immunol, 16 (5), pp. 279-294. , COI: 1:CAS:528:DC%2BC28XmvVGntb0%3D, PID: 27121651; Stypi?ska, B., Paradowska-Gorycka, A., Cytokines and MicroRNAs as candidate biomarkers for systemic lupus erythematosus (2015) Int J Mol Sci, 16 (10), pp. 24194-24218. , PID: 26473848; Husakova, M., MicroRNAs in the key events of systemic lupus erythematosus pathogenesis (2016) Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, , PID: 27003314; Mart�nez-Ramos, R., Garc�a-Lozano, J.R., Lucena, J.M., Castillo-Palma, M.J., Garc�a-Hern�ndez, F., Rodr�guez, M.C., N��ez-Rold�n, A., Gonz�lez-Escribano, M.F., Differential expression pattern of microRNAs in CD4+ and CD19+ cells from asymptomatic patients with systemic lupus erythematosus (2014) Lupus, 23 (4), pp. 353-359. , PID: 24509687; Liu, Y.J., Fan, W.J., Bai, J.Z., MicroRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus (2015) Eur Rev Med Pharmacol Sci, 19 (20), pp. 3838-3842. , PID: 26531267; Tang, Y., Luo, X., Cui, H., Ni, Z., Yuan, M., Guo, Y., MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins (2009) Arthritis Rheum, 60 (4), pp. 1065-1075. , COI: 1:CAS:528:DC%2BD1MXltFemsr8%3D, PID: 19333922; Hai-yan, W., Yang, L., Mei-hong, C., Hui, Z., Expression of MicroRNA-146a in peripheral blood mononuclear cells in patients with systemic lupus erythematosus (2011) Zhongguo Yi XueKeXue Yuan XueBao, 33 (2), pp. 185-188; Pan, W., Zhu, S., Yuan, M., Cui, H., Wang, L., Luo, X., Li, J., Shen, N., MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyl transferase 1 (2010) J Immunol, 184 (12), pp. 6773-6781. , COI: 1:CAS:528:DC%2BC3cXmvFejsrw%3D, PID: 20483747; Fan, W., Liang, D., Tang, Y., Qu, B., Cui, H., Luo, X., Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus (2012) Arthritis Rheum, 64 (11), pp. 3715-3725. , COI: 1:CAS:528:DC%2BC38Xhs1Shtr%2FO, PID: 22736314; Garchow, B., Kiriakidou, M., MicroRNA-21 deficiency protects from lupus-like autoimmunity in the chronic graft-versus-host disease model of systemic lupus erythematosus (2016) Clin Immunol, 162, pp. 100-106. , COI: 1:CAS:528:DC%2BC2MXhvFGmur%2FO, PID: 26631756; Lieberman, L.A., Tsokos, G.C., The IL-2 defect in systemic lupus erythematosus disease has an expansive effect on host immunity (2010) J Biomed Biotechnol, 2010, p. 740619. , PID: 20625413; Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R., Farrar, M.A., IL-2 receptor and ?-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells (2007) J Immunol, 178, pp. 280-290. , COI: 1:CAS:528:DC%2BD2sXnvVWj, PID: 17182565; Liao, W., Lin, J.X., Leonard, W.J., Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy (2013) Immunity, 38, pp. 13-25. , COI: 1:CAS:528:DC%2BC3sXhsVaqtr0%3D, PID: 23352221; Schorle, H., Holtschke, T., H�nig, T., Schimpl, A., Horak, I., Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting (1991) Nature, 352 (6336), pp. 621-624. , COI: 1:CAS:528:DyaK3MXltlekurY%3D, PID: 1830926; Horak, I., Immunodeficiency in IL-2-knockout mice (1995) Clin Immunol Immunopathol, 76 (3), pp. S172-S173. , COI: 1:CAS:528:DyaK2MXptFOns70%3D, PID: 7554463; Horwitz, D.A., The clinical significance of decreased T cell interleukin-2 production in systemic lupus erythematosus: connecting historical dots (2010) Arthritis Rheum, 62 (8), pp. 2185-2187. , COI: 1:CAS:528:DC%2BC3cXhtFOiu7rL, PID: 20506258; Tan, E.M., Cohen, A.S., Fries, J.F., Masi, A.T., McShane, D.J., Rothfield, N.F., Schaller, J.G., Winchester, R.J., The 1982 revised criteria for the classification of systemic lupus erythematosus (1982) Arthritis Rheum, 25, pp. 1271-1277. , COI: 1:STN:280:DyaL3s%2FkvVCmtA%3D%3D, PID: 7138600; Bombardier, C., Gladman, D.D., Urowitz, M.B., Caron, D., Chang, D.H., Derivation of the SLEDAI: a disease activity index for lupus patients (1992) Arthritis Rheum, 35, pp. 630-640. , COI: 1:STN:280:DyaK383oslWrtg%3D%3D, PID: 1599520; Firestein, G.S., (2008) Kelley�s textbook of rheumatology, , W. B Saunders, Philadelphia; Chafin, C.B., Reilly, C.M., MicroRNAs implicated in the immunopathogenesis of lupus nephritis (2013) Clin Dev Immunol, 2013, p. 430239. , PID: 23983769; Yan, S., Yim, L.Y., Lu, L., Lau, C.S., Chan, V.S., MicroRNA regulation in systemic lupus erythematosus pathogenesis (2014) Immune Netw, 14 (3), pp. 138-148. , PID: 24999310; Miao, C.G., Yang, Y.Y., He, X., Huang, C., Huang, Y., Zhang, L., Lv, X.W., Li, J., The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus (2013) Cell Signal, 25 (9), pp. 1828-1836. , COI: 1:CAS:528:DC%2BC3sXhtVOqsr3P, PID: 23707525; Fan, W., Liang, D., Tang, Y., Qu, B., Cui, H., Luo, X., Huang, X., Shen, N., Expression of miR-31 in peripheral blood of patients with systemic lupus erythematosus (2011) J Shanghai Jiaotong Univ, 31, pp. 39-42; Song, Y.C., Tang, S.J., Lee, T.P., Hung, W.C., Lin, S.C., Tsai, C.Y., Ng, W.V., Sun, K.H., Reversing interleukin-2 inhibition by anti�double-stranded DNA autoantibody ameliorates glomerulonephritis in MRL-lpr/lprmice (2010) Arthritis Rheum, 62, pp. 2401-2411. , COI: 1:CAS:528:DC%2BC3cXhtFOiu7fN, PID: 20506162; Tsokos, G.C., Disease pathogenesis: systemic lupus erythematosus (2011) N Engl J Med, 365, pp. 2110-2121. , COI: 1:CAS:528:DC%2BC3MXhs1Sku7rP, PID: 22129255; Mellor-Pita, S., Citores, M.J., Castejon, R., Tutor-Ureta, P., Yebra-Bango, M., Andreu, J.L., Vargas, J.A., Decrease of regulatory T cells in patients with systemic lupus erythematosus (2006) Ann Rheum Dis, 65, pp. 553-554. , COI: 1:STN:280:DC%2BD287ktFKjuw%3D%3D, PID: 16531555; Wong, C.K., Lit, L.C., Tam, L.S., Li, E.K., Wong, P.T., Lam, C.W., Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in autoimmunity (2008) Clin Immunol, 127, pp. 385-393. , COI: 1:CAS:528:DC%2BD1cXmt12qsrs%3D, PID: 18373953; Webster, K.E., Walters, S., Kohler, R., Mrkvan, T., Boyman, O., Surh, C.D., Grey, S.T., Sprent, J., In vivo expansion of Treg cells with IL-2 mAb complexes; induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression (2009) J Exp Med, 206, pp. 751-760. , COI: 1:CAS:528:DC%2BD1MXkvVSiurs%3D, PID: 19332874; Sgouroudis, E., Kornete, M., Piccirillo, C.A., IL-2 production by dendritic cells promotes Foxp3�+�regulatory T-cell expansion in autoimmune resistant NOD congenic mice (2011) Autoimmunity, 44, pp. 406-414. , COI: 1:CAS:528:DC%2BC3MXos1Kisr0%3D, PID: 21244339; Matsuoka, K., Koreth, J., Kim, H.T., Bascug, G., McDonough, S., Kawano, Y., Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease (2013) Sci Transl Med, 5, p. 179ra43. , PID: 23552371; Mizui, M., Koga, T., Lieberman, L.A., Beltran, J., Yoshida, N., Johnson, M.C., Tisch, R., Tsokos, G.C., Interleukin-2 protects lupus-prone mice from multiple end organ damage by limiting CD4?CD8�Interleukin-17-producing T cells (2014) J Immunol, 193, pp. 2168-2177. , COI: 1:CAS:528:DC%2BC2cXhtlOnu7jJ, PID: 25063876; Xue, F., Li, H., Zhang, J., Lu, J., Xia, Y., Xia, Q., MiR-31 regulates interleukin 2 and kinase suppressor of ras 2 during T cell activation (2013) Genes Immun, 14 (2), pp. 127-131. , COI: 1:CAS:528:DC%2BC3sXjslGmtLs%3D, PID: 23303246; Helms, W.S., Jeffrey, J.L., Holmes, D.A., Townsend, M.B., Clipstone, N.A., Su, L., Modulation of NFAT-dependent gene expression by the RhoA signaling pathway in T cells (2007) J Leukoc Biol, 82, pp. 361-369. , COI: 1:CAS:528:DC%2BD2sXos12ru7o%3D, PID: 17502338; Crispin, J.C., Tsokos, G.C., Transcriptional regulation of IL-2 in health and autoimmunity (2009) Autoimmun Rev, 8 (3), pp. 190-195. , COI: 1:CAS:528:DC%2BD1MXmtVylt7o%3D, PID: 18723131; Shaw, J.P., Utz, P.J., Durand, D.B., Toole, J.J., Emmel, E.A., Crabtree, G.R., Identification of a putative regulator of early T cell activation genes (1988) Science, 241, pp. 202-205. , COI: 1:CAS:528:DyaL1cXls1Cls7k%3D, PID: 3260404; Rooney, J.W., Sun, Y.L., Glimcher, L.H., Hoey, T., Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation (1995) Mol Cell Biol, 15, pp. 6299-6310. , COI: 1:CAS:528:DyaK2MXovVyks7o%3D, PID: 7565783; Chow, C.W., Rincon, M., Davis, R.J., Requirement for transcription factor NFAT in interleukin-2 expression (1999) Mol Cell Biol, 19, pp. 2300-2307. , COI: 1:CAS:528:DyaK1MXhsFCjsrg%3D, PID: 10022916; Garchow, B.G., BartulosEncinas, O., Leung, Y.T., Tsao, P.Y., Eisenberg, R.A., Caricchio, R., Obad, S., Kiriakidou, M., Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice (2011) EMBO Mol Med, 3 (10), pp. 605-615. , COI: 1:CAS:528:DC%2BC3MXhtlersL%2FF, PID: 21882343; Stagakis, E., Bertsias, G., Verginis, P., Nakou, M., Hatziapostolou, M., Kritikos, H., Iliopoulos, D., Boumpas, D.T., Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression (2011) Ann Rheum Dis, 70 (8), pp. 1496-1506. , COI: 1:CAS:528:DC%2BC3MXhtV2ru7zE, PID: 21602271; Rouas, R., Fayyad-Kazan, H., El Zein, N., Lewalle, P., Roth�, F., Simion, A., Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression (2009) Eur J Immunol, 39 (6), pp. 1608-1618. , COI: 1:CAS:528:DC%2BD1MXntFCitbc%3D, PID: 19408243; Chen, C., Rowell, E.A., Thomas, R.M., Hancock, W.W., Wells, A.D., Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation (2006) J Biol Chem, 281, pp. 36828-36834. , COI: 1:CAS:528:DC%2BD28Xht1eltrbN, PID: 17028180; Murugaiyan, G., da Cunha, A.P., Ajay, A.K., Joller, N., Garo, L.P., Kumaradevan, S., Yosef, N., Weiner, H.L., MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis (2015) J Clin Invest., 125 (3), pp. 1069-1080. , PID: 25642768 | |
dcterms.source | Scopus |