Three-stage estimation of the mean and variance of the normal distribution with application to an inverse coefficient of variation with computer simulation

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorYousef A.
dc.contributor.authorHamdy H.
dc.contributor.otherDepartment of Mathematics
dc.contributor.otherKuwait College of Science and Technology
dc.contributor.otherKuwait City
dc.contributor.other27235
dc.contributor.otherKuwait; Faculty of Management Sciences
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.other6th October City
dc.contributor.other12566
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:33Z
dc.date.available2020-01-09T20:40:33Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractThis paper considers sequentially two main problems. First, we estimate both the mean and the variance of the normal distribution under a unified one decision framework using Hall's three-stage procedure. We consider a minimum risk point estimation problem for the variance considering a squared-error loss function with linear sampling cost. Then we construct a confidence interval for the mean with a preassigned width and coverage probability. Second, as an application, we develop Fortran codes that tackle both the point estimation and confidence interval problems for the inverse coefficient of variation using a Monte Carlo simulation. The simulation results show negative regret in the estimation of the inverse coefficient of variation, which indicates that the three-stage procedure provides better estimation than the optimal. � 2019 by the authors.en_US
dc.identifier.doihttps://doi.org/10.3390/math7090831
dc.identifier.doiPubMed ID :
dc.identifier.issn22277390
dc.identifier.otherhttps://doi.org/10.3390/math7090831
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/GrpN9
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofseriesMathematics
dc.relation.ispartofseries7
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectUniversity of Modern Sciences and Arts
dc.subjectMSA University
dc.subjectAsymptotic regreten_US
dc.subjectLoss functionen_US
dc.subjectNormal distributionen_US
dc.subjectThree-stage sampling procedureen_US
dc.titleThree-stage estimation of the mean and variance of the normal distribution with application to an inverse coefficient of variation with computer simulationen_US
dc.typeArticleen_US
dcterms.isReferencedByMukhopadhyay, N., de Silva, B., (2009) Sequential Methods and Their Applications, , CRC: New York, NY, USA; Degroot, M.H., (1970) Optimal Statistical Decisions, , McGraw-Hill: New York, NY, USA; Dantzig, G.B., On the nonexistence of tests of 'students' hypothesis having power functions independent of s (1940) Ann. Math. Stat, 11, pp. 186-192; Hall, P., Asymptotic theory and triple sampling of sequential estimation of a mean (1981) Ann. Stat, 9, pp. 1229-1238; Anscombe, F.J., Sequential estimation (1953) J. Roy. Stat. Soc, 15, pp. 1-21; Robbins, H., (1959) Sequential Estimation of the Mean of a Normal Population. Probability and Statistics (Harald Cramer Volume), pp. 235-245. , Almquist and Wiksell: Uppsala, Sweden; Chow, Y.S., Robbins, H., On the asymptotic theory of fixed width sequential confidence intervals for the mean (1965) Ann. Math. Stat, 36, pp. 1203-1212; Stein, C., A two-sample test for a linear hypothesis whose power is independent of the variance (1945) Ann. Math. Stat, 16, pp. 243-258; Cox, D.R., Estimation by double sampling (1952) Biometrika, 39, pp. 217-227; Mukhopadhyay, N., Sequential estimation of a location parameter in exponential distributions (1974) Calcutta Stat. Assoc. Bull, 23, pp. 85-95; Mukhopadhyay, N., Hilton, G.F., Two-stage and sequential procedures for estimating the location parameter of a negative exponential distribution (1986) S. Afr. Stat. J, 20, pp. 117-136; Mukhopadhyay, N., Darmanto, S., Sequential estimation of the difference of means of two negative exponential populations (1988) Seq. Anal, 7, pp. 165-190; Mukhopadhyay, N., Hamdy, H.I., On estimating the difference of location parameters of two negative exponential distributions (1984) Can. J. Stat, 12, pp. 67-76; Ghosh, M., Mukhopadhyay, N., Sequential point estimation of the parameter of a rectangular distribution (1975) Calcutta Stat. Assoc. Bull, 24, pp. 117-122; Mukhopadhyay, N., Ekwo, M.E., Sequential estimation problems for the scale parameter of a Pareto distribution (1987) Scand. Actuar. J, pp. 83-103; Sinha, B.K., Mukhopadhyay, N., Sequential estimation of a bivariate normal mean vector (1976) Sankhya Ser. B, 38, pp. 219-230; Zacks, S., Sequential estimation of the mean of a lognormal distribution having a prescribed proportional closeness (1966) Ann. Math. Stat, 37, pp. 1688-1696; Khan, R.A., Sequential estimation of the mean vector of a multivariate normal distribution (1968) Indian Stat. Inst, 30, pp. 331-334; Ghosh, M., Mukhopadhyay, N., Sen, P.K., (1997) Sequential Estimation, , Wiley: New York, NY, USA; Hall, P., Sequential estimation saving sampling operations (1983) J. Roy. Stat. Soc. B, 45, pp. 1229-1238; Mukhopadhyay, N., A note on three-stage and sequential point estimation procedures for a normal mean (1985) Seq. Anal, 4, pp. 311-319; Mukhopadhyay, N., Sequential estimation problems for negative exponential populations (1988) Commun. Stat. Theory Methods A, 17, pp. 2471-2506; Mukhopadhyay, N., Some properties of a three-stage procedure with applications in sequential analysis (1990) Indian J. Stat Ser. A, 52, pp. 218-231; Mukhopadhyay, N., Hamdy, H.I., Al Mahmeed, M., Costanza, M.C., Three-stage point estimation procedures for a normal mean (1987) Seq. Anal, 6, pp. 21-36; Mukhopadhyay, N., Mauromoustakos, A., Three-stage estimation procedures of the negative exponential distribution (1987) Metrika, 34, pp. 83-93; Hamdy, H.I., Pallotta, W.J., Triple sampling procedure for estimating the scale parameter of Pareto distribution (1987) Commun. Stat. Theory Methods, 16, pp. 2155-2164; Hamdy, H.I., Mukhopadhyay, N., Costanza, M.C., Son, M.S., Triple stage point estimation for the exponential location parameter (1988) Ann. Inst. Stat. Math, 40, pp. 785-797; Hamdy, H.I., Remarks on the asymptotic theory of triple stage estimation of the normal mean (1988) Scand. J. Stat, 15, pp. 303-310; Hamdy, H.I., AlMahmeed, M., Nigm, A., Son, M.S., Three-stage estimation for the exponential location parameters (1989) Metron, 47, pp. 279-294; Lohr, S.L., Accurate multivariate estimation using triple sampling (1990) Ann. Stat, 18, pp. 1615-1633; Mukhopadhyay, N., Padmanabhan, A.R., A note on three-stage confidence intervals for the difference of locations: The exponential case (1993) Metrika, 40, pp. 121-128; Takada, Y., Three-stage estimation procedure of the multivariate normal mean (1993) Indian J. Stat. Ser. B, 55, pp. 124-129; Hamdy, H.I., Costanza, M.C., Ashikaga, T., On the Behrens-Fisher problem: An integrated triple sampling approach (1995), (Unpublished Manuscript); Hamdy, H.I., Performance of fixed width confidence intervals under Type II errors: The exponential case (1997) South. African Stat. J, 31, pp. 259-269; AlMahmeed, M., Hamdy, H.I., Sequential estimation of linear models in three stages (1990) Metrika, 37, pp. 19-36; AlMahmeed, M., AlHessainan, A., Son, M.S., Hamdy, H.I., Three-stage estimation for the mean of a one-parameter exponential family (1998) Korean Commun. Stat, 5, pp. 539-557; Costanza, M.C., Hamdy, H.I., Haugh, L.D., Son, M.S., Type II error performance of triple sampling fixed precision confidence intervals for the normal mean (1995) Metron, 53, pp. 69-82; Yousef, A., Kimber, A., Hamdy, H.I., Sensitivity of Normal-Based Triple Sampling Sequential Point Estimation to the Normality Assumption (2013) J. Stat. Plan. Inference, 143, pp. 1606-1618; Yousef, A., (2014) Construction a Three-Stage Asymptotic Coverage Probability for the Mean Using Edgeworth Second-Order Approximation. Selected Papers on the International Conference on Mathematical Sciences and Statistics 2013, pp. 53-67. , Springer: Singapore; Hamdy, H.I., Son, S.M., Yousef, S.A., Sensitivity Analysis of Multi-Stage Sampling to Departure of an underlying Distribution from Normality with Computer Simulations (2015) J. Seq. Anal, 34, pp. 532-558; Yousef, A., A Note on a Three-Stage Sequential Confidence Interval for the Mean When the Underlying Distribution Departs away from Normality (2018) Int. J. Appl. Math. Stat, 57, pp. 57-69; Liu, W., A k-stage sequential sampling procedure for estimation of a normal mean (1995) J. Stat. Plan. Inf, 65, pp. 109-127; Son, M.S., Haugh, H.I., Hamdy, H.I., Costanza, M.C., Controlling type II error while constructing triple sampling fixed precision confidence intervals for the normal mean (1997) Ann. Inst. Stat. Math, 49, pp. 681-692; Wald, A., (1947) Sequential Analysis, , Wiley: New York, NY, USA; Simon, G., On the cost of not knowing the variance when making a fixed-width confidence interval for the mean (1968) Ann. Math. Stat, 39, pp. 1946-1952; Martinsek, A.T., Negative regret, optimal stopping, and the elimination of outliers (1988) J. Amer. Stat. Assoc, 83, pp. 160-163; McGibney, G., Smith, M.R., An unbiased signal to noise ratio measure for magnetic resonance images (1993) Med. Phys, 20, pp. 1077-1079; Mukhopadhyay, N., Datta, S., Chattopadhyay, S., Applied Sequential Methodologies: Real-World Examples with Data Analysis (2004), CRC Press
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
mathematics-07-00831-v2.pdf
Size:
299.49 KB
Format:
Adobe Portable Document Format
Description: