Functionalized Fe3O4 Magnetic Nanoparticle Potentiometric Detection Strategy versus Classical Potentiometric Strategy for Determination of Chlorpheniramine Maleate and Pseudoephedrine HCl
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Moustafa A.A. | |
dc.contributor.author | Hegazy M.A. | |
dc.contributor.author | Mohamed D. | |
dc.contributor.author | Ali O. | |
dc.contributor.other | Analytical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Kasr-El Aini Street | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11562 | |
dc.contributor.other | Egypt; Analytical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | 6th October City | |
dc.contributor.other | 11787 | |
dc.contributor.other | Egypt; Analytical Chemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Ein Helwan | |
dc.contributor.other | Cairo | |
dc.contributor.other | 11795 | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:44Z | |
dc.date.available | 2020-01-09T20:40:44Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Nanosized adsorbents when used in potentiometric methods of analysis usually show better performance rather than the traditional potentiometric approach; this is attributed to the high specific surface area of the nanomaterial used in addition to the lack of internal diffusion resistance, thus improving their adsorption capacity. In the presented work, a rapid and sensitive potentiometric determination of chlorpheniramine maleate (CPM) and pseudoephedrine hydrochloride (PSE) in pure form, in pharmaceutical preparation, and in biological fluid was developed based on functionalized magnetic nanoparticles (Fe3O4). This strategy was compared with the classical potentiometric strategy. Three types of sensors were constructed using phosphotungstic acid (PTA), ?-cyclodextrin (?-CD), and ?-cyclodextrin-conjugated Fe3O4 magnetic nanoparticles for the potentiometric determination of each of CPM and PSE. The prepared sensors were characterized in regards to their composition, life duration, working pH range, and response time. The sensors have demonstrated promising selectivity to CPM and PSE in the presence of pharmaceutical formulation excipients, plasma matrix, and a diversity of both organic and inorganic interfering materials. The developed sensors have displayed good responses. Statistical comparison of the achieved results with a reported method has revealed no significant difference regarding both accuracy and precision. � 2019 Azza A. Moustafa et al. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100204120&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1155/2019/6947042 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 20908865 | |
dc.identifier.other | https://doi.org/10.1155/2019/6947042 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/ZEPgB | |
dc.language.iso | English | en_US |
dc.publisher | Hindawi Limited | en_US |
dc.relation.ispartofseries | Journal of Analytical Methods in Chemistry | |
dc.relation.ispartofseries | 2019 | |
dc.subject | beta cyclodextrin | en_US |
dc.subject | chlorpheniramine maleate | en_US |
dc.subject | iron oxide | en_US |
dc.subject | magnetic nanoparticle | en_US |
dc.subject | phosphotungstic acid | en_US |
dc.subject | pseudoephedrine | en_US |
dc.subject | Article | en_US |
dc.subject | comparative study | en_US |
dc.subject | drug determination | en_US |
dc.subject | human | en_US |
dc.subject | pH | en_US |
dc.subject | potentiometry | en_US |
dc.subject | reaction time | en_US |
dc.title | Functionalized Fe3O4 Magnetic Nanoparticle Potentiometric Detection Strategy versus Classical Potentiometric Strategy for Determination of Chlorpheniramine Maleate and Pseudoephedrine HCl | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Yasuda, S.U., Wellstein, A., Likhari, P., Barbey, J.T., Woosley, R.L., Chlorpheniramine plasma concentration and histamine H1-receptor occupancy? (1995) Clinical Pharmacology & Therapeutics, 58 (2), pp. 210-220; Goodman, L.S., Gilman, A.G., (1996) Goodman and Gilman�S The Pharmaceutical Basis of Therapeutics, , Macmillan Publishing Company, New York, NY, USA, 9th edition; Van Esch, A., Van Steensel-Moll, H.A., Steyerberg, E.W., Offringa, M., Habbema, J.D., Derksen-Lubsen, G., Antipyretic efficacy of ibuprofen and acetaminophen in children with febrilsse seizures (1995) Archives of Pediatrics & Adolescent Medicine, 149 (6), pp. 632-637; Murtha, J.L., Julian, T.N., Radebaugh, G.W., Simultaneous determination of pseudoephedrine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydro-bromide by second-derivative photodiode array spectroscopy (1988) Journal of Pharmaceutical Sciences, 77 (8), pp. 715-718; Palabiyik, I.M., Din�, E., Onur, F., Simultaneous spec-trophotometric determination of pseudoephedrine hydrochloride and ibuprofen in a pharmaceutical preparation using ratio spectra derivative spectrophotometry and multivariate calibration techniques (2004) Journal of Pharmaceutical and Biomedical Analysis, 34 (3), pp. 473-483; Chitlange, S., Sakarkar, D., Wankhede, S., Wadodkar, S., High performance thin layer chromatographic method for simultaneous estimation of ibuprofen and pseudoephedrine hydrochloride (2008) Indian Journal of Pharmaceutical Sciences, 70 (3), pp. 398-400; Chen, X., Zhang, Y., Zhong, D., Simultaneous determination of chlorpheniramine and pseudoephedrine in human plasma by liquid chromatography�tandem mass spectrometry (2004) Biomedical Chromatography, 18 (4), pp. 248-253; Lou, H., Yuan, H., Ruan, Z., Jiang, B., Simultaneous determination of paracetamol, pseudoephedrine, dextrophan and chlorpheniramine in human plasma by liquid chromatography�tandem mass spectrometry (2010) Journal of Chromatography B, 878 (7), pp. 682-688; Thompson, J.A., Leffert, F.H., Sensitive GLC�mass spectrometric determination of chlorpheniramine in serum (1980) Journal of Pharmaceutical Sciences, 69 (6), pp. 707-710; Louhaichi, M., Jebali, S., Loueslati, M., Adhoum, N., Monser, L., Simultaneous determination of pseudoephdrine, pheniramine, guaifenisin, pyrilamine, chlorpheniramine and dextromethorphan in cough and cold medicines by high performance liquid chromatography (2009) Talanta, 78 (3), pp. 991-997; Dong, Y., Chen, X., Chen, Y., Chen, X., Hu, Z., Separation and determination of pseudoephedrine, dextromethorphan, diphenhydramine and chlorpheniramine in cold medicines by nonaqueous capillary electrophoresis (2005) Journal of Pharmaceutical and Biomedical Analysis, 39 (1-2), pp. 285-289; Liu, Y., Zhou, W., Determination of chlorpheniramine and its binding with human serum albumin by capillary electrophoresis with Tris(2,2?-bipyridyl)ruthenium(II) elec-trochemiluminescence detection (2006) Analytical Sciences, 22 (7), pp. 999-1003; Huang, C.-L., Ren, J.-J., Xu, D.-F., Studies of the chlorpheniramine solid-state ion-selective electrode (1996) Talanta, 43 (12), pp. 2061-2065; Qu, A., Xu, D., Ren, L., Jin, X., Cai, S., Construction and application of an all-solid-state chlorphenigramine ionselective electrode (1992) Electroanalysis, 4 (3), pp. 355-358; Abu-Shawish, H.M., Potentiometric response of modified carbon paste electrode based on mixed ion-exchangers (2008) Electroanalysis, 20 (5), pp. 491-497; Long, Y., Li, W., Nie, L., Yao, S., Preparation and application of chlorpheniramine ion-selective piezoelectric sensor based on selective adsorption (1999) Analytica Chimica Acta, 395 (1-2), pp. 33-40; Ganjali, M.R., Alipour, A., Riahi, S., Larijani, B., Norouzi, P., Quantitative analysis of pseudoephedrine in formulation by potentiometric membrane sensor; computational investigation (2009) International Journal of Electrochemical Science, 4 (9), pp. 1262-1276; Zayed, S., Issa, Y., Hussein, A., Construction and performance characterization of ionselective electrodes for potentiometric determination of pseudoephedrine hydrochloride applying batch and flow injection analysis techniques (2006) Annali Di Chimica, 96 (7-8), pp. 421-433; Giahi, M., Arvand, M., Mirzaei, M., Ali Bagherinia, M., Determination of pseudoephedrine hydrochloride in some pharmaceutical drugs by potentiometric membrane sensor based on pseudoephedrine�phosphotungstate ion pair (2009) Analytical Letters, 42 (6), pp. 870-880; Hassan, S.S., Mahmoud, W.H., Abdel-Samad, M.S., Direct potentiometry and potentiotitrimetry of warfarin and ibuprofen in pharmaceutical preparations using PVC ferroin-based membrane sensors (1998) Mikrochimica Acta, 129 (3-4), pp. 251-257; Wang, Q., Li, S., Che, X., Fan, X., Li, C., Dissolution improvement and stabilization of ibuprofen by co-grinding in a ?-cyclodextrin inclusion ground complex (2010) Asian Journal of Pharmaceutical Sciences, 5, pp. 188-193; Chow, D.D., Karara, A.H., Characterization, dissolution and bioavailability in rats of ibuprofen-?-cyclodextrin complex system (1986) International Journal of Pharmaceutics, 28 (2-3), pp. 95-101; A?�i, B., D�nmmez, �.A., Bozdo gan, A., Sungur, S., Experimental design of reversed-phase high performance liquid chromatographic conditions for simultaneous determination of ibuprofen, pseudoephedrine hydrochloride, chlorpheniramine maleate, and nipagen (2010) Journal of Analytical Chemistry, 65 (7), pp. 743-748; Stefan-Van Staden, R.-I., R�afat, M.N., Cyclodextrins-based enantioselective, potentiometric membrane electrodes for l-vesamicol assay in serum samples (2006) Sensors and Actuators B: Chemical, 117 (1), pp. 123-127; El-Kosasy, A.M., El-Aziz, O.A., Ebrahim, N., Fattah, L.A., Novel potentiometric determination of torasemide for antidoping purpose, using ?-cyclodextrin and calixarene (2012) Analytical and Bioanalytical Chemistry, 4 (4), pp. 357-371; Song, D.A., Liang, R.N., Zhang, R.M., Ding, J.W., Zhang, J., Qin, W., Potentiometric detection of polyions based on functionalized magnetic nanoparticles (2010) Chinese Chemical Letters, 21 (11), pp. 1378-1381; Kakhki, R.M., Application of magnetic nanoparticles modified with cyclodextrins as efficient adsorbents in separation systems (2015) Journal of Inclusion Phenomena and Macrocyclic Chemistry, 82 (3-4), pp. 301-310; Palacin, S., Hidber, P.C., Bourgoin, J.-P., Miramond, C., Fermon, C., Whitesides, G.M., Patterning with magnetic materials at the micron scale (1996) Chemistry of Materials, 8 (6), pp. 1316-1325; Berger, P., Adelman, N.B., Beckman, K.J., Campbell, D.J., Ellis, A.B., Lisensky, G.C., Preparation and properties of an aqueous ferrofluid (1999) Journal of Chemical Education, 76 (7), p. 943; Mak, S.-Y., Chen, D.-H., Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles (2004) Dyes and Pigments, 61 (1), pp. 93-98; Tudisco, C., Oliveri, V., Cantarella, M., Vecchio, G., Condorelli, G.G., Cyclodextrin anchoring on magnetic Fe3O4 nanoparticles modified with phosphonic linkers (2012) European Journal of Inorganic Chemistry, 2012 (32), pp. 5323-5331; Chalasani, R., Vasudevan, S., Cyclodextrin functionalized magnetic iron oxide nanocrystals: A host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media (2012) Journal of Materials Chemistry, 22 (30), pp. 14925-14931; Kiasat, A.R., Nazari, S., ?-Cyclodextrin conjugated magnetic nanoparticles as a novel magnetic microvessel and phase transfer catalyst: Synthesis and applications in nucle-ophilic substitution reaction of benzyl halides (2013) Journal of Inclusion Phenomena and Macrocyclic Chemistry, 76 (3-4), pp. 363-368; Kapor, A., Nikoli?, V., Nikoli?, L., Inclusion complexes of amlodipine besylate and cyclodextrins (2010) Open Chemistry, 8 (4), pp. 834-841; El-Kosasy, A.M., Tawakkol, S.M., Ayad, M.F., Sheta, A.I., A novel potentiometric detection strategy for the determination of amlodipine besylate based on functionalized particles (2014) Electroanalysis, 26 (5), pp. 1031-1038; Analytical chemistry division, commission on analytical nomenclature (2000) Pure and Applied Chemistry, 72, p. 1852. , IUPAC | |
dcterms.source | Scopus |