Novel grape seed extract nanoparticles attenuate amikacin-induced nephrotoxicity in rats

Abstract

Amikacin (AMK), an antibiotic, is prescribed for treating various bacterial diseases like urinary tract infections, encephalitis, asthma and joint infections. The most significant side effects, which affect 1 to 10% of consumers, are kidney injury and ototoxicity. Several studies discussed the role of grape seed extract (GSE) in renoprotection against AMK. The current study aimed to extract Muscat of Alexandria grape seeds followed by its characterization to determine its bioactive components and elements. GSE nanoparticles was prepared and tested, in vitro, to determine its safety for the in vivo experiment. Experimental groups were control group I, AMK group II, GSE (50 mg/kg)-AMK group III, GSE (100 mg/kg)-AMK group IV, GSE NPs (25 mg/kg)-AMK group V and GSE NPs (50 mg/ kg)-AMK group VI. Groups 2–6 received 100 mg/kg/day of AMK by intramuscular injection for two weeks for the induction of experimental nephrotoxicity. Groups 3–6 received daily doses of GSE or GSE NPs by oral gavage, concurrently, with AMK for two weeks. GSE was rich in polyphenol compounds like proanthocyanidins, phenolic acids like gallic and egallic acids, catechine and epicatechine. GSE NPs have a smooth surface and a size that ranged from 40 to 70 nm; and have an anti-oxidant, anti-inflammatory, anti-cytotoxic and anti-microbial in vitro effects. It reduced oxidative stress and inflammation that followed AMK administration; and attenuated the AMK- induced nephrotoxicity. GSE NPs were safe to be used in vivo as a renoprotective agent against AMK; where, it reduced the oxidative stress and inflammation.

Description

Keywords

Amikacin, Grape seed, Nanoparticles, GC-MS, HPLC, Inflammation

Citation