Enhancemnet client-server interface for mining large databases with J2EE implementation

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorIsmail M.N.
dc.contributor.authorTorkey F.A.
dc.contributor.authorAli K.A.M.
dc.contributor.otherFaculty of Electronic Engineering
dc.contributor.otherDept. of Comp. Sci. and Engineering
dc.contributor.otherMenoufia University
dc.contributor.otherMenouf 32952
dc.contributor.otherEgypt; Faculty of Computers and Information
dc.contributor.otherMenoufia University
dc.contributor.otherShebin El Kom
dc.contributor.otherEgypt; MSA University
dc.contributor.otherCairo
dc.contributor.otherDokki
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:36Z
dc.date.available2020-01-25T19:58:36Z
dc.date.issued2004
dc.descriptionScopus
dc.description.abstractThis paper applies the concept of the application server, three-tier architecture, EJB, and J2EE to knowledge discovery in large databases which is using the letter recognition classification and detection as an example case. EJBs will be used as intermediate connecting layer, also called middle tier, to get requests from the clients and pass the request to database server. Cloud-scape or Oracle9i database server will provide database support and JDBC (thin) for cloudscape or Oracle9i that work on Windows NT/2000/XP environment will provide database connection. We show how a classification metric drawn from Rule-Induction/Decision Tree algorithms can be computed via the Java model. Performance evaluation figures, such as classification error rate and number of rules, are presented for adaptive data mining classifiers and filters, using the Letter Image Recognition Data example which is the practical implementation of this work. 2004 IEEE.en_US
dc.description.sponsorshipAin Shams University, Faculty of Engineering, Cairo, Egypt;IEEE - Egypt Sectionen_US
dc.identifier.isbn780385756
dc.identifier.urihttps://ieeexplore.ieee.org/document/1374402
dc.language.isoEnglishen_US
dc.relation.ispartofseriesProceedings - 2004 International Conference on Electrical, Electronic and Computer Engineering, ICEEC'04
dc.subjectApplication serveren_US
dc.subjectData miningen_US
dc.subjectEJBen_US
dc.subjectJ2EE platformen_US
dc.subjectRule-Induction/Decision Tree classifier algorithmsen_US
dc.subjectScalabilityen_US
dc.subjectSecurityen_US
dc.subjectThree-tier client-serveren_US
dc.subjectAdaptive filteringen_US
dc.subjectAlgorithmsen_US
dc.subjectClassification (of information)en_US
dc.subjectClient server computer systemsen_US
dc.subjectComputer architectureen_US
dc.subjectData miningen_US
dc.subjectDatabase systemsen_US
dc.subjectSecurity of dataen_US
dc.subjectServersen_US
dc.subjectTrees (mathematics)en_US
dc.subjectAdaptive data mining classifiersen_US
dc.subjectApplication serversen_US
dc.subjectEJBen_US
dc.subjectJ2EE platformen_US
dc.subjectRule-induction/decision tree classifier algorithmsen_US
dc.subjectScalabilityen_US
dc.subjectThree-tier client-serveren_US
dc.subjectInterfaces (computer)en_US
dc.titleEnhancemnet client-server interface for mining large databases with J2EE implementationen_US
dc.typeConference Paperen_US
dcterms.isReferencedByChattratichat, J., Darlington, J., Large scale data mining: Challenges and responses (1997) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pp. 143-146; Distributed multitiered applications J2EETM Tutorial, , http://java.sun.com/j2ee/tutorial/; http://java.sun.com/products/ejb/index.html; Kargupta, H., Chan, P., (2000) Advances in Distributed and Parallel Knowledge Discovery, , AAAI Press/the MIT Press, Menlo Park; Witten, I.H., Frank, E., (2000) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, , Morgan Kaufmann, San Francisco; Salzberg, S.L., (1999) On Comparing Classifiers: A Critique of Current Research and Methods: Data Mining and Knowledge Discovery, 1, pp. 1-12; Quinlan, J.R., (1993) C4.5: Programs for Machine Learning, , Morgan Kauffman; (1998) On-line Documentation, , http://www.rulequest.com, C5.0; Waikato Environment for Knowledge Analysis (Weka), , www.cs.waikato.ac.nz/ml/weka; Frey, P.W., Slate, D.J., Letter recognition using Holland-style adaptive classifiers (1991) Machine Learning, 6 (2), pp. 161-182. , March; http://www.ics.uci.edu/mlearn/MLRepository.html
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: