Adiponectin and E-selectin concentrations in relation to inflammation in obese type 2 diabetic patients with coronary heart disease(s)

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl-Mesallamy H.O.
dc.contributor.authorHamdy N.M.
dc.contributor.authorSalman T.M.
dc.contributor.authorMahmoud S.
dc.contributor.otherBiochemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Biochemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAL-Azhar University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Modern Sciences and Arts University
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:30Z
dc.date.available2020-01-25T19:58:30Z
dc.date.issued2011
dc.descriptionScopus
dc.description.abstractAim. Adipose tissue is now regarded as a source of proinflammatory mediators which may contribute to vascular injury, insulin resistance (IR), and atherogenesis, however, some of them have a protective role against vascular inflammation and/or IR; namely adiponectin and nitric oxide (NO). Adiponectin is a fat derived hormone, which enhances insulin sensitivity. In experimental studies adiponectin was shown to have anti-atherogenic properties by suppressing endothelial expression of adhesion molecules as endothelial-selectin (E-selectin) and inflammatory cytokines as high-sensitivity C-reactive protein (hsCRP), interleukin-1? (IL-1?), and monocyte chemotactic protein-1 (MCP-1). Therefore, the aim of the study was to evaluate plasma adiponectin, E-selectin, hsCRP, IL-1?, and MCP-1 concentrations in obese patients with and without coronary heart disease (CHD) having type 2 diabetes mellitus (DM) and evaluation of their relationship with selected anthropometric, biochemical, and clinical parameters. Methods. The study group consisted of (N.=70) males, 20 of which served as healthy non-obese controls (group I) (mean age 38.53.7 years; mean BMI 28 1.2 kg/m2). Patients enrolled in the study were classified into the following groups: type 2 DM obese subjects without CHD (group II) (N.=25) (mean age 42.23 years; mean BMI 32.11.4 kg/m2) and type 2 DM obese subjects with CHD (group III) (N.=25) (mean age 40.63 years; mean BMI 31.51.2 kg/m 2). Glucose and insulin estimation was performed and insulin resistance index (HOMA-IR) was calculated. In the fasting state, the plasma HbA1c, adiponectin, E-selectin, in comparison to hsCRP, IL-1?, MCP-1, and lipid parameters were estimated. Results. FBG, HbA 1c%, lipids, insulin, MDA, NO, hsCRP, IL-?, MCP-1, Adiponectin as well as E-selectin concentration were significantly different in patients with type 2 DM and CHD in comparison to patients without CHD and moreover, the healthy control group (P=0.01). There was a significant negative correlation between adiponectin and E-selectin (r=-0.642; P=0.0001). Conclusion. Our study supports the hypothesis that decreased level of adipokine(s), together with increased oxidative stress, pro-inflammatory marker(s) as well as endothelial adhesion molecule(s) contributes to the complex process of atherosclerosis in type 2 diabetic obese patients that may lead eventually to CHD.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=26205&tip=sid&clean=0
dc.identifier.doihttps://doi.org/
dc.identifier.issn3911977
dc.identifier.otherhttps://doi.org/
dc.identifier.urihttps://t.ly/ge8g8
dc.language.isoEnglishen_US
dc.relation.ispartofseriesMinerva Endocrinologica
dc.relation.ispartofseries36
dc.subjectAdiponectinen_US
dc.subjectCoronary diseasesen_US
dc.subjectDiabetes mellitusen_US
dc.subjectObesityen_US
dc.subjectadiponectinen_US
dc.subjectC reactive proteinen_US
dc.subjectendothelial leukocyte adhesion molecule 1en_US
dc.subjectglucoseen_US
dc.subjecthemoglobin A1cen_US
dc.subjectinsulinen_US
dc.subjectinterleukin 1betaen_US
dc.subjectlipiden_US
dc.subjectmonocyte chemotactic protein 1en_US
dc.subjectnitric oxideen_US
dc.subjectadipose tissueen_US
dc.subjectadulten_US
dc.subjectarticleen_US
dc.subjectatherogenesisen_US
dc.subjectatherosclerosisen_US
dc.subjectblood vessel injuryen_US
dc.subjectcontrolled studyen_US
dc.subjectdiabetic obesityen_US
dc.subjectdisease associationen_US
dc.subjectglucose blood levelen_US
dc.subjecthumanen_US
dc.subjectinflammationen_US
dc.subjectinsulin resistanceen_US
dc.subjectinsulin sensitivityen_US
dc.subjectischemic heart diseaseen_US
dc.subjectmajor clinical studyen_US
dc.subjectmaleen_US
dc.subjectnon insulin dependent diabetes mellitusen_US
dc.subjectoxidative stressen_US
dc.subjectvasculitisen_US
dc.subjectAdiponectinen_US
dc.subjectAdulten_US
dc.subjectAlgorithmsen_US
dc.subjectBiological Markersen_US
dc.subjectBody Mass Indexen_US
dc.subjectC-Reactive Proteinen_US
dc.subjectCase-Control Studiesen_US
dc.subjectChemokine CCL2en_US
dc.subjectCoronary Diseaseen_US
dc.subjectDiabetes Mellitus, Type 2en_US
dc.subjectE-Selectinen_US
dc.subjectGlucose Intoleranceen_US
dc.subjectHumansen_US
dc.subjectInflammationen_US
dc.subjectInsulin Resistanceen_US
dc.subjectInterleukin-1betaen_US
dc.subjectMaleen_US
dc.subjectMiddle Ageden_US
dc.subjectObesityen_US
dc.subjectPredictive Value of Testsen_US
dc.subjectSensitivity and Specificityen_US
dc.titleAdiponectin and E-selectin concentrations in relation to inflammation in obese type 2 diabetic patients with coronary heart disease(s)en_US
dc.typeArticleen_US
dcterms.isReferencedBy(2007) Cardiovascular Disease Prevention and Control Fact Sheet 317-2/07, , The World Health Organization. Geneve: World Health Organization; Qasim, A., Mehta, N.N., Tadesse, M.G., Wolfe, M.L., Rhodes, T., Girman, C., Reilly, M.P., Adipokines, Insulin Resistance, and Coronary Artery Calcification (2008) Journal of the American College of Cardiology, 52 (3), pp. 231-236. , DOI 10.1016/j.jacc.2008.04.016, PII S0735109708014770; Kowalska, I., Stra?czkowski, M., Niko?ajuk, A., Kinalska, I., G�rska, M., Prokop, J., Plasma adiponectin and E-selectin concentrations in patients with coronary heart disease and newly diagnosed disturbances of glucose metabolism (2006) Adv Med Sci, 51, pp. 94-97; Austin, M.A., King, M.C., Vranizan, K.M., Krauss, R.M., Atherogenic lipoprotein phenotype: A proposed genetic marker for coronary heart disease risk (2010) Circulation, 82, pp. 495-506; Wannamethee, S.G., Tchernova, J., Whincup, P., Lowe, G.D., Rumley, A., Brown, K., Cherry, L., Sattar, N., Associations of adiponectin with metabolic and vascular risk parameters in the British Regional Heart Study reveal stronger links to insulin resistance-related than to coronory heart disease risk-related parameters (2007) International Journal of Obesity, 31 (7), pp. 1089-1098. , DOI 10.1038/sj.ijo.0803544, PII 0803544; Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Matsuzawa, Y., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients (2000) Arteriosclerosis, Thrombosis, and Vascular Biology, 20 (6), pp. 1595-1599; Kumada, M., Kihara, S., Sumitsuji, S., Kawamoto, T., Matsumoto, S., Ouchi, N., Arita, Y., Matsuzawa, Y., Association of hypoadiponectinemia with coronary artery disease in men (2003) Arteriosclerosis, Thrombosis, and Vascular Biology, 23 (1), pp. 85-89. , DOI 10.1161/01.ATV.0000048856.22331.50; Adamczak, M., Wiecek, A., Funahashi, T., Chudek, J., Kokot, F., Matsuzawa, Y., Decreased plasma adiponectin concentration in patients with essential hypertension (2003) American Journal of Hypertension, 16 (1), pp. 72-75. , DOI 10.1016/S0895-7061(02)03197-7, PII S0895706102031977; Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Matsuzawa, Y., Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice (2002) Circulation, 106 (22), pp. 2767-2770. , DOI 10.1161/01.CIR.0000042707.50032.19; Herlitz, J., Malmberg, K., Karlson, B.W., Ryden, L., Hjalmarson, A., Mortality and morbidity during a five-year follow up of diabetics with myocardial infarction (1988) Acta Med Scand, 224, pp. 31-38; Haffner, S.M., Lehto, S., Ronnemaa, T., Pyorala, K., Laakso, M., Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction (1998) New England Journal of Medicine, 339 (4), pp. 229-234. , DOI 10.1056/NEJM199807233390404; El-Mesallamy, H., Suwailem, S., Hamdy, N., Evaluation of C-reactive protein, Endothelin-1, Adhesion Molecule(s), and Lipids as Inflammatory Markers in Type 2 Diabetes Mellitus Patients (2007) Mediators Inflamm, 2007, pp. 73635-73642; El-Mesallamy, H., Suwailem, S., Hamdy, N., Mostafa, S., Oxidative stress and platelet activation: Markers of myocardial infarction in type 2 diabetes mellitus (2010) Angiology, 61, pp. 14-18; Abraham, E.C., Huff, T.A., Cope, N.D., Wilson, J.B., Bransome, E.D., Huisman, T.H., Determination of the glycosylated hemoglobins (HbA1) with a new microcolumn procedure. Suitability of the technique for assessing the clinical management of diabetes mellitus (1978) Diabetes, 27, pp. 931-937; Trinder, P., Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen (1969) J Clin Pathol, 22, pp. 158-161; Richmond, W., Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum (1973) Clin Chem, 19, pp. 1350-1356; Siedel, J., Hagele, E.O., Ziegenhorn, J., Wahlefeld, A.W., Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency (1983) Clinical Chemistry, 29 (6), pp. 1075-1080; Burstein, M., Scholnick, H.R., Morfin, R., Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions (1970) J Lipid Res, 11, pp. 583-595; Hatch, F.T., Lees, R.S., Practical methods for plasma lipoprotein analysis (1968) Adv Lipid Res, 6, pp. 1-68; Cleeman, J.I., Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) (2001) Journal of the American Medical Association, 285 (19), pp. 2486-2497; Janero, D.R., Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury (1990) Free Radical Biology and Medicine, 9 (6), pp. 515-540; Matthews, D.R., Hosker, J.P., Rudenski, A.S., Homeostasis model assessment: Insulin resistance and b-cell function from fasting plasma glucose and insulin concentrations in man (1985) Diabetologia, 28 (7), pp. 412-419. , DOI 10.1007/BF00280883; Green, L.C., Wagner, D.A., Glogowski, J., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Analytical Biochemistry, 126 (1), pp. 131-138. , DOI 10.1016/0003-2697(82)90118-X; Herder, C., Schneitler, S., Rathmann, W., Haastert, B., Schneitler, H., Winkler, H., Bredahl, R., Martin, S., Low-grade inflammation, obesity, and insulin resistance in adolescents (2007) Journal of Clinical Endocrinology and Metabolism, 92 (12), pp. 4569-4574. , http://jcem.endojournals.org/cgi/reprint/92/12/4569, DOI 10.1210/jc.2007-0955; Meyer, A.A., Kundt, G., Steiner, M., Schuff-Werner, P., Kienast, W., Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: The impact of cardiovascular risk factors (2006) Pediatrics, 117 (5), pp. 1560-1567. , http://pediatrics.aappublications.org/cgi/reprint/117/5/1560, DOI 10.1542/peds.2005-2140; Alhusseini, N., Arafat, N., Mohammed, E., Allam, M., Effect of exercise training on adiponectin receptor expression and insulin resistance in mice fed a high fat diet (2010) Am J Biochemistry Biotechnology, 6, pp. 77-83; Qasim, A., Mehta, N.N., Tadesse, M.G., Wolfe, M.L., Rhodes, T., Girman, C., Reilly, M.P., Adipokines, Insulin Resistance, and Coronary Artery Calcification (2008) Journal of the American College of Cardiology, 52 (3), pp. 231-236. , DOI 10.1016/j.jacc.2008.04.016, PII S0735109708014770; Casper, G., Coen, D.A., Vascular complications in diabetes mellitus: The role of endothelial dysfunction (2005) Clinical Science, 109, pp. 143-159; Caballero, A.E., Endothelial dysfunction in obesity and insulin resistance: A road to diabetes and heart disease (2003) Obesity Research, 11 (11), pp. 1278-1289; Fernandes, J.L., Soeiro, A., Ferreira, C.B., Serrano, C.V., Sindromes coron�rias agudas e inflama��o (2006) Rev Soc Cardiol Estado de S�o Paulo, 3, pp. 178-187; Navarro, J.F., Mora, C., Role of inflammation in diabetic complications (2005) Nephrology Dialysis Transplantation, 20 (12), pp. 2601-2604. , DOI 10.1093/ndt/gfi155; Kawashima, S., The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis (2004) Endothelium: Journal of Endothelial Cell Research, 11 (2), pp. 99-107. , DOI 10.1080/10623320490482637; Kahn, B.B., Flier, J.S., Obesity and insulin resistance (2000) Journal of Clinical Investigation, 106 (4), pp. 473-481; Sartipy, P., Loskutoff, D.J., Monocyte chemoattractant protein 1 in obesity and insulin resistance (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (12), pp. 7265-7270. , DOI 10.1073/pnas.1133870100; Jung, C., Gerdes, N., Wanger, M., Figulla, H., Circulating levels of interleukin-1 family cytokines in overweight adolescents (2010) Mediators of Inflammation, 6, pp. 10-11; Diez, J.J., Iglesias, P., The role of the novel adipocyte-derived hormone adiponectin in human disease (2003) European Journal of Endocrinology, 148 (3), pp. 293-300. , DOI 10.1530/eje.0.1480293; Tsao, T.-S., Lodish, H.F., Fruebis, J., ACRP30, a new hormone controlling fat and glucose metabolism (2002) European Journal of Pharmacology, 440 (2-3), pp. 213-221. , DOI 10.1016/S0014-2999(02)01430-9, PII S0014299902014309; Lumeng, C.N., Bodzin, J.L., Saltiel, A.R., Obesity induces a phenotypic switch in adipose tissue macrophage polarization (2007) Journal of Clinical Investigation, 117 (1), pp. 175-184. , http://www.jci.org/cgi/reprint/117/1/175, DOI 10.1172/JCI29881; Houstis, N., Rosen, E.D., Lander, E.S., Reactive oxygen species have a causal role in multiple forms of insulin resistance (2006) Nature, 440, pp. 944-948; Mulvihill, N.T., Foley, J.B., Crean, P., Walsh, M., Prediction of cardiovascular risk using soluble cell adhesion molecules (2002) European Heart Journal, 23 (20), pp. 1569-1574. , DOI 10.1053/euhj.2002.3188; Halcox, J.P.J., Schenke, W.H., Zalos, G., Mincemoyer, R., Prasad, A., Waclawiw, M.A., Nour, K.R.A., Quyyumi, A.A., Prognostic value of coronary vascular endothelial dysfunction (2002) Circulation, 106 (6), pp. 653-658. , DOI 10.1161/01.CIR.0000025404.78001.D8; Ohashi, K., Kihara, S., Ouchi, N., Kumada, M., Fujita, K., Hiuge, A., Hibuse, T., Shimomura, I., Adiponectin replenishment ameliorates obesity-related hypertension (2006) Hypertension, 47 (6), pp. 1108-1116. , DOI 10.1161/01.HYP.0000222368.43759.a1, PII 0000426820060600000015; Ouchi, N., Kihara, S., Arita, Y., Nishida, M., Matsuyama, A., Okamoto, Y., Ishigami, M., Matsuzawa, Y., Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages (2001) Circulation, 103 (8), pp. 1057-1063; Gomes, F., Daniela, F., Heraldo, P., Obesity and coronary artery disease: Role of vascular inflammation (2010) Arq Bras Cardiol, 94, pp. 10.1590; Bruun, J.M., Lihn, A.S., Pedersen, S.B., Richelsen, B., Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): Implication of macrophages resident in the AT (2005) Journal of Clinical Endocrinology and Metabolism, 90 (4), pp. 2282-2289. , DOI 10.1210/jc.2004-1696
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: