Comparative lyophilized platelet-rich plasma wafer and powder for wound-healing enhancement: formulation, in vitro and in vivo studies

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorYassin G.E.
dc.contributor.authorDawoud M.H.S.
dc.contributor.authorWasfi R.
dc.contributor.authorMaher A.
dc.contributor.authorFayez A.M.
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherAl Azhar University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA University)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Microbiology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA University)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Biochemistry
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA University)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Department of Pharmacology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA University)
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:35Z
dc.date.available2020-01-09T20:40:35Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractPlatelet-rich plasma (PRP) accelerates wound healing, as it is an excellent source of growth factors. PRP was separated from whole human blood by centrifugation. PRP powder and wafers were prepared by lyophilization, with the wafers prepared using sodium carboxymethylcellulose (Na CMC). The PRP wafers showed porous structures, as indicated by scanning electron microscopy (SEM) images, and the ability of the wafer to absorb exudates and thus promote wound healing was tested with the hydration capacity test. The platelet count was tested and indicated that the presence of PRP in the wafers had no effect on the platelet count. An antimicrobial activity test was carried out, showing that PRP had antibacterial activity against Gram-negative bacteria. Compared with lyophilized PRP powder and PRP-free wafers, PRP wafers showed the highest percent of wound size reduction on induced wounds in rats. Histopathological examination of rat skin showed that the PRP wafers achieved the shortest healing time, followed by the lyophilized PRP powder and finally the PRP-free wafers. The present study revealed that PRP can be formulated as a wafer, which is a promising pharmaceutical delivery system that can be used for enhanced wound-healing activity and improved the ease of application compared to lyophilized PRP powder. 2019, 2019 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21190&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1080/03639045.2019.1620269
dc.identifier.doiPubMed ID 31099273
dc.identifier.issn3639045
dc.identifier.otherhttps://doi.org/10.1080/03639045.2019.1620269
dc.identifier.otherPubMed ID 31099273
dc.identifier.urihttps://t.ly/vj06Y
dc.language.isoEnglishen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofseriesDrug Development and Industrial Pharmacy
dc.relation.ispartofseries45
dc.subjecthistopathological studyen_US
dc.subjectlyophilization (freeze-drying)en_US
dc.subjectPlatelet-rich plasma (PRP)en_US
dc.subjectwaferen_US
dc.subjectwound healingen_US
dc.subjectcarboxymethylcelluloseen_US
dc.subjectwound healing promoting agenten_US
dc.subjectantiinfective agenten_US
dc.subjectAcinetobacter baumanniien_US
dc.subjectanimal cellen_US
dc.subjectanimal experimenten_US
dc.subjectanimal tissueen_US
dc.subjectantibacterial activityen_US
dc.subjectArticleen_US
dc.subjectbacterial growthen_US
dc.subjectcontrolled studyen_US
dc.subjectdrug delivery systemen_US
dc.subjectepithelizationen_US
dc.subjectfreeze dryingen_US
dc.subjecthistopathologyen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjecthydrationen_US
dc.subjectin vitro studyen_US
dc.subjectin vivo studyen_US
dc.subjectmaleen_US
dc.subjectnonhumanen_US
dc.subjectphysical appearanceen_US
dc.subjectplatelet counten_US
dc.subjectpowderen_US
dc.subjectraten_US
dc.subjectscanning electron microscopyen_US
dc.subjectthrombocyte rich plasmaen_US
dc.subjectwaferen_US
dc.subjectwater lossen_US
dc.subjectwound closureen_US
dc.subjectwound healingen_US
dc.subjectzone of inhibitionen_US
dc.subjectadministration and dosageen_US
dc.subjectanimalen_US
dc.subjectchemistryen_US
dc.subjectdrug effecten_US
dc.subjectfreeze dryingen_US
dc.subjectGram negative bacteriumen_US
dc.subjectGram negative infectionen_US
dc.subjectmicrobiologyen_US
dc.subjectpowderen_US
dc.subjectproceduresen_US
dc.subjectskinen_US
dc.subjectthrombocyte rich plasmaen_US
dc.subjectWistar raten_US
dc.subjectwound healingen_US
dc.subjectAnimalsen_US
dc.subjectAnti-Bacterial Agentsen_US
dc.subjectCarboxymethylcellulose Sodiumen_US
dc.subjectFreeze Dryingen_US
dc.subjectGram-Negative Bacteriaen_US
dc.subjectGram-Negative Bacterial Infectionsen_US
dc.subjectMaleen_US
dc.subjectPlatelet-Rich Plasmaen_US
dc.subjectPowdersen_US
dc.subjectRatsen_US
dc.subjectRats, Wistaren_US
dc.subjectSkinen_US
dc.subjectWound Healingen_US
dc.titleComparative lyophilized platelet-rich plasma wafer and powder for wound-healing enhancement: formulation, in vitro and in vivo studiesen_US
dc.typeArticleen_US
dcterms.isReferencedByzgrta?, T., Utku, B., Yildiz, C., Platelet-rich plasma (2016) Musculoskeletal research and basicscience, pp. 283-288. , Springer,. In: nKorkusuz F, editor.,. p; Etulain, J., Platelets in wound healing and regenerative medicine (2018) Platelets, 29, pp. 556-568; Alsousou, J., Ali, A., Willett, K., The role of platelet-rich plasma in tissue regeneration (2013) Platelets, 24, pp. 173-182; Arnoczky, S.P., Delos, D., Rodeo, S.A., Platelet-rich plasma: a promising innovation in dentistry (2003) J Can Dent Assoc, 69, p. 664; Wasterlain, A.S., Braun, H.J., Dragoo, J.L., Contents and formulations of platelet rich plasma (2016) Platelet rich plasma in musculoskeletal practice, pp. 1-29. , London: Springer,. In: Maffulli N, editor.,. p; Samy, A.M., The role of platelet rich plasma in management of fracture neck femur: new insights (2016) Int Orthop, 40, pp. 1019-1024; Lacci, K.M., Dardik, A., Platelet-rich plasma: support for its use in (2010) Yale J Biol Med, 83, pp. 1-9; Alio, J.L., Rodriguez, A.E., De Arriba, P., Treatment with platelet-rich plasma of surgically related dormant corneal ulcers (2018) Eur J Ophthalmol, 28, pp. 515-520; Bhujbal, R., A Malik, N., Kumar, N., Comparative evaluation of platelet rich plasma in socket healing and bone regeneration after surgical removal of impacted mandibular third molars (2018) J Dent Res Dent Clin Dent Prospects, 12, pp. 153-158; Martinez-Zapata, M.J., Mart�-Carvajal, A.J., Sol�, I., Autologous platelet-rich plasma for treating chronic wounds (2016) Cochrane Database Syst Rev, 25, p. CD006899; Burgos-Alonso, N., Lobato, I., Hernndez, I., Autologous platelet-rich plasma in the treatment of venous leg ulcers in primary care: a randomised controlled, pilot study (2018) J Wound Care, 27, pp. S20-S24; Tambella, A.M., Attili, A.R., Dupre, G., Platelet-rich plasma to treat experimentally- induced skin wounds in animals: a systematic review and meta-analysis (2018) PLoS One, 13, pp. 1-26; Kim, J.-H., Park, C., Park, H.-M., Curative effect of autologous platelet-rich plasma on a large cutaneous lesion in a dog (2009) Vet Dermatol, 20, pp. 123-126; Tambella, A.M., Martin, S., Cantalamessa, A., Platelet-rich plasma and other hemocomponents in veterinary regenerative medicine (2018) Wounds, 30, pp. 329-336; Huang, Y., Liu, X., Xu, X., Intra-articular injections of platelet-rich plasma, hyaluronic acid or corticosteroids for knee osteoarthritis: a prospective randomized controlled study (2019) Orthopade, 48, pp. 239-247; Marcazzan, S., Weinstein, R.L., Del Fabbro, M., Efficacy of platelets in bone healing: a systematic review on animal studies (2018) Platelets, 29, pp. 326-337; Faillace, V., Tambella, A.M., Fratini, M., Use of autologous platelet-rich plasma for a delayed consolidation of a tibial fracture in a young donkey (2017) J Vet Med Sci, 79, pp. 618-622; Picard, F., Hersant, B., Bosc, R., The growing evidence for the use of platelet-rich plasma on diabetic chronic wounds: a review and a proposal for a new standard care (2015) Wound Repair Regen, 23, pp. 638-643; Carducci, M., Bozzetti, M., Spezia, M., Treatment of a refractory skin ulcer using punch graft and autologous platelet-rich plasma (2016) Case Rep Dermatol Med, 2016, pp. 1-4; Mazzucco, L., Balbo, V., Guaschino, R., Reasonable compromise to define the quality standards of platelet concentrate for non-transfusion use (CPunT) (2012) Transfus Apher Sci, 47, pp. 207-211; Yeaman, M.R., The role of platelets in antimicrobial host defense (1997) Clin Infect Dis, 25, pp. 951-968; Murphy, M.B., Blashki, D., Buchanan, R.M., Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation (2012) Biomaterials, 33, pp. 5308-5316; Chevrier, A., Darras, V., Picard, G., Injectable chitosan-platelet-rich plasma implants to promote tissue regeneration: in vitro properties, in vivo residence, degradation, cell recruitment and vascularization (2018) J Tissue Eng Regen Med, 12, pp. 217-228; Kushida, S., Kakudo, N., Morimoto, N., Platelet and growth factor concentrations in activated platelet-rich plasma: a comparison of seven commercial separation systems (2014) J Artif Organs, 17, pp. 186-192; Ng, S.F., Jumaat, N., Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections (2014) Eur J Pharm Sci, 51, pp. 173-179; Boateng, J.S., Auffret, A.D., Matthews, K.H., Characterisation of freeze-dried wafers and solvent evaporated films as potential drug delivery systems to mucosal surfaces (2010) Int J Pharm, 389, pp. 24-31; Elsner, J.J., Zilberman, M., Novel antibiotic-eluting wound dressings: an in vitro study and engineering aspects in the dressings design (2010) J Tissue Viability, 19, pp. 54-66; Ayensu, I., Mitchell, J.C., Boateng, J.S., Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network (2012) Colloids Surf B: Biointerfaces, 91, pp. 208-214; Weller, C., Interactive dressings and their role in moist wound management (2009) Adv Text Wound Care, pp. 97-113; Law, J.X., Chowdhury, S.R., Saim, A.B., Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds (2017) J Tissue Viability, 26, pp. 208-215; Nakatani, Y., Agata, H., Sumita, Y., Efficacy of freeze-dried platelet-rich plasma in bone engineering (2017) Arch Oral Biol, 73, pp. 172-178; El-Kased, R.F., Amer, R.I., Attia, D., Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing (2017) Sci Rep, 7, p. 9692. , [cited 2018 Oct 7]; Rowe, R.C., Sheskey, P.J., Fenton, M.E., Handbook of pharmaceutical excipients: pharmaceutical excipients (2006) Am Pharm Assoc, p. 44; Gonchar, I., Lipunov, A., Afanasov, I., Platelet rich plasma and growth factors cocktails for diabetic foot ulcers treatment: state of art developments and future prospects (2017) Diabetes Metab Syndr Clin Res Rev, 12, pp. 189-194; Vijay, L., Kumar, U., Evauation of in vivo wound healing activity of Moringa oleifera bark extracts on different wound model in rats (2012) Pharmacologia, 3, pp. 637-640
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: