A novel thermostable and halophilic thioredoxin reductase from the Red Sea Atlantis II hot brine pool

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorBadiea E.A.
dc.contributor.authorSayed A.A.
dc.contributor.authorMaged M.
dc.contributor.authorFouad W.M.
dc.contributor.authorSaid M.M.
dc.contributor.authorEsmat A.Y.
dc.contributor.otherDepartment of Biochemistry
dc.contributor.otherFaculty of Science
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Biology
dc.contributor.otherSchool of Sciences and Engineering
dc.contributor.otherAmerican University in Cairo
dc.contributor.otherNew Cairo
dc.contributor.otherEgypt; Children Cancer Hospital
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Biotechnology
dc.contributor.otherOctober University for Modern Sciences and Arts
dc.contributor.other6th October City
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:38Z
dc.date.available2020-01-09T20:40:38Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractThe highly extreme conditions of the lower convective layer in the Atlantis II (ATII) Deep brine pool of the Red Sea make it an ideal environment for the search for novel enzymes that can function under extreme conditions. In the current study, we isolated a novel sequence of a thioredoxin reductase (TrxR) enzyme from the metagenomic dataset established from the microbial community that resides in the lower convective layer of Atlantis II. The gene was cloned, expressed and characterized for redox activity, halophilicity, and thermal stability. The isolated thioredoxin reductase (ATII-TrxR) was found to belong to the high-molecularweight class of thioredoxin reductases. A search for conserved domains revealed the presence of an extra domain (Crp) in the enzyme sequence. Characterization studies of ATIITrxR revealed that the enzyme was halophilic (maintained activity at 4 M NaCl), thermophilic (optimum temperature was 65�C) and thermostable (60% of its activity was retained at 70�C). Additionally, the enzyme utilized NADH in addition to NADPH as an electron donor. In conclusion, a novel thermostable and halophilic thioredoxin reductase has been isolated with a unique sequence that adapts to the harsh conditions of the brine pools making this protein a good candidate for biological research and industrial applications. � 2019 Badiea et al.en_US
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0217565
dc.identifier.doiPubMedID31150456
dc.identifier.issn19326203
dc.identifier.otherhttps://doi.org/10.1371/journal.pone.0217565
dc.identifier.otherPubMedID31150456
dc.identifier.urihttps://t.ly/1VVL7
dc.language.isoEnglishen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.ispartofseriesPLoS ONE
dc.relation.ispartofseries14
dc.subjectthioredoxin reductaseen_US
dc.subjectamino acid sequenceen_US
dc.subjectArticleen_US
dc.subjectenzyme activityen_US
dc.subjectenzyme isolationen_US
dc.subjectgeneen_US
dc.subjectgene activityen_US
dc.subjectgene expressionen_US
dc.subjectmicrobial communityen_US
dc.subjectmolecular cloningen_US
dc.subjectnonhumanen_US
dc.subjectphylogenetic treeen_US
dc.subjectRed Seaen_US
dc.subjectsequence alignmenten_US
dc.subjectsequence analysisen_US
dc.subjectthermostabilityen_US
dc.subjectTrxR geneen_US
dc.titleA novel thermostable and halophilic thioredoxin reductase from the Red Sea Atlantis II hot brine poolen_US
dc.typeArticleen_US
dcterms.isReferencedByWang, Y., Li, J.T., He, L.S., Yang, B., Gao, Z.M., Cao, H.L., Zonation of microbial communities by a hydrothermal mound in the atlantis II deep (the red sea) (2015) PloS One, 10 (10), p. e0140766. , https://doi.org/10.1371/journal.pone.0140766, Epub 2015/10/21 PMID: 26485717; PubMed Central PMCID: PMCPMC4613831; Siam, R., Mustafa, G.A., Sharaf, H., Moustafa, A., Ramadan, A.R., Antunes, A., Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools (2012) PloS One, 7 (8), p. e42872. , https://doi.org/10.1371/journal.pone.0042872, PMID: 22916172; PubMed Central PMCID: PMCPMC3423430. . Epub 2012/08/24; Kamanda Ngugi, D., Blom, J., Alam, I., Rashid, M., Ba-Alawi, W., Zhang, G., Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea (2015) ISME J, 9 (2), pp. 396-411. , https://doi.org/10.1038/ismej.2014.137, PMID: 25105904; PubMed Central PMCID: PMCPMC4303633. . Epub 2014/08/12; Laurila, T.E., Hannington, M.D., Leybourne, M., Petersen, S., Devey, C.W., Garbe-Sch�nberg, D., New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea (2015) Geochemistry, Geophysics, Geosystems, 16 (12), pp. 4449-4478. , https://doi.org/10.1002/2015GC006010; Adel, M., Elbehery, A.H., Aziz, S.K., Aziz, R.K., Grossart, H.P., Siam, R., Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments (2016) Scientific Reports, 6, p. 32704. , https://doi.org/10.1038/srep32704, PMID: 27596223; PubMed Central PMCID: PMCPMC5011723. . Epub 2016/09/07; Sayed, A., Ghazy, M.A., Ferreira, A.J., Setubal, J.C., Chambergo, F.S., Ouf, A., A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea (2014) The Journal of Biological Chemistry, 289 (3), pp. 1675-1687. , https://doi.org/10.1074/jbc.M113.493429, PMID: 24280218; PubMed Central PMCID: PMC3894346; Behzad, H., Ibarra, M.A., Mineta, K., Gojobori, T., Metagenomic studies of the Red Sea (2016) Gene, 576 (2), pp. 717-723. , https://doi.org/10.1016/j.gene.2015.10.034, PMID: 26526132. . Epub 2015/11/04; Mick, E., Sorek, R., High-resolution metagenomics (2014) Nature Biotechnology, 32, p. 750. , https://doi.org/10.1038/nbt.2962, PMID: 25101744; Mohamed, Y.M., Ghazy, M.A., Sayed, A., Ouf, A., El-Dorry, H., Siam, R., Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool (2013) Scientific Reports, 3, p. 3358. , https://doi.org/10.1038/srep03358, PMID: 24285146. . Epub 2013/11/29; Williams, C.H., Arscott, L.D., Muller, S., Lennon, B.W., Ludwig, M.L., Wang, P.F., Thioredoxin reductase two modes of catalysis have evolved (2000) European Journal of Biochemistry, 267 (20), pp. 6110-6117. , PMID: 11012662. . Epub 2000/ 09/30; Cha, M.K., Kim, I.H., Thioredoxin-linked peroxidase from human red blood cell: Evidence for the existence of thioredoxin and thioredoxin reductase in human red blood cell (1995) Biochemical and Biophysical Research Communications, 217 (3), pp. 900-907. , https://doi.org/10.1006/bbrc.1995.2856, PMID: 8554614. . Epub 1995/12/26; Kanzok, S.M., Fechner, A., Bauer, H., Ulschmid, J.K., Muller, H.M., Botella-Munoz, J., Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster (2001) Science (New York, NY), 291 (5504), pp. 643-646. , https://doi.org/10.1126/science.291.5504.643, PMID: 11158675. . Epub 2001/02/07; Arner, E.S., Nordberg, J., Holmgren, A., Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase (1996) Biochemical and Biophysical Research Communications, 225 (1), pp. 268-274. , https://doi.org/10.1006/bbrc.1996.1165, PMID: 8769129. . Epub 1996/08/05; May, J.M., Mendiratta, S., Hill, K.E., Burk, R.F., Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase (1997) The Journal of Biological Chemistry, 272 (36), pp. 22607-22610. , https://doi.org/10.1074/jbc.272.36.22607, PMID: 9278416. . Epub 1997/ 09/05; Saccoccia, F., Angelucci, F., Boumis, G., Carotti, D., Desiato, G., Miele, A.E., Thioredoxin reductase and its inhibitors (2014) Current Protein & Peptide Science, 15 (6), pp. 621-646. , https://doi.org/10.2174/1389203715666140530091910, PMID: 24875642; PubMed Central PMCID: PMCPMC4275836. . Epub 2014/05/31; Noguchi, H., Taniguchi, T., Itoh, T., MetaGeneAnnotator: Detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes (2008) DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 15 (6), pp. 387-396. , https://doi.org/10.1093/dnares/dsn027, PMID: 18940874; PubMed Central PMCID: PMCPMC2608843. . Epub 2008/10/23; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) Journal of Molecular Biology, 215 (3), pp. 403-410. , https://doi.org/10.1016/S0022-2836(05)80360-2.Epub1990/10/05, PMID: 2231712; Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., The InterPro protein families database: The classification resource after 15 years (2015) Nucleic Acids Research, 43, pp. D213-D221. , https://doi.org/10.1093/nar/gku1243, PMID: 25428371; PubMed Central PMCID: PMCPMC4383996. . Epub 2014/11/28; Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., CDD: NCBI's conserved domain database (2015) Nucleic Acids Research, 43, pp. D222-D226. , https://doi.org/10.1093/nar/gku1221, Epub 2014/11/22 PMID: 25414356; PubMed Central PMCID: PMCPMC4383992; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22 (22), pp. 4673-4680. , https://doi.org/10.1093/nar/22.22.4673, PMID: 7984417; PubMed Central PMCID: PMCPMC308517. . Epub 1994/11/11; The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees (1987) Molecular Biology and Evolution, 4, pp. 406-425. , https://doi.org/10.1093/oxfordjournals.molbev.a040454, Nei NSaM. PMID: 3447015; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054, PMID: 27004904. . Epub 2016/03/24; Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER Suite: Protein structure and function prediction (2015) Nature Methods, 12 (1), pp. 7-8. , https://doi.org/10.1038/nmeth.3213, PMID: 25549265; PubMed Central PMCID: PMCPMC4428668. . Epub 2014/12/31; Glaser, F., Pupko, T., Paz, I., Bell, R.E., Bechor-Shental, D., Martz, E., ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information (2003) Bioinformatics, 19 (1), pp. 163-164. , https://doi.org/10.1093/bioinformatics/19.1.163, PMID: 12499312; Anzaldi, L.J., Mu�oz-Fern�ndez, D., Erill, I., BioWord: A sequence manipulation suite for Microsoft Word (2012) BMC Bioinformatics, 13 (1), p. 124. , https://doi.org/10.1186/1471-2105-13-124, PMID: 22676326; Costantini, S., Colonna, G., Facchiano, A.M., ESBRI: A web server for evaluating salt bridges in proteins (2008) Bioinformation, 3 (3), pp. 137-138. , PMID: 19238252; PubMed Central PMCID: PMCPMC2639689; Baker, E.N., Hubbard, R.E., Hydrogen bonding in globular proteins (1984) Progress in Biophysics and Molecular Biology, 44 (2), pp. 97-179. , https://doi.org/10.1016/0079-6107(84)90007-5, PMID: 6385134; Whitby, L.G., A new method for preparing flavin-adenine dinucleotide (1953) Biochemical Journal, 54 (3), pp. 437-442. , https://doi.org/10.1042/bj0540437, PMID: 13058921; Holmgren, A., Bjornstedt, M., Thioredoxin and thioredoxin reductase (1995) Methods in Enzymology, 252, pp. 199-208. , PMID: 7476354. . Epub 1995/01/01; Luthman, M., Holmgren, A., Rat liver thioredoxin and thioredoxin reductase: Purification and characterization (1982) Biochemistry, 21 (26), pp. 6628-6633. , PMID: 7159551. . Epub 1982/12/21; Cohen, G., Yanko, M., Mislovati, M., Argaman, A., Schreiber, R., Av-Gay, Y., Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: Sequences, expression, and organization of the genes (1993) Journal of Bacteriology, 175 (16), pp. 5159-5167. , https://doi.org/10.1128/jb.175.16.5159-5167.1993, PMID: 8349555; PubMed Central PMCID: PMCPMC204983. . Epub 1993/08/01; Arner, E.S., Zhong, L., Holmgren, A., Preparation and assay of mammalian thioredoxin and thioredoxin reductase (1999) Methods in Enzymology, 300, pp. 226-239. , PMID: 9919525. . Epub 1999/01/27; Lam, K.N., Cheng, J., Engel, K., Neufeld, J.D., Charles, T.C., Current and future resources for functional metagenomics (2015) Frontiers in Microbiology, 6 (1196). , https://doi.org/10.3389/fmicb.2015.01196, PMID: 26579102; Ufart�, L., Potocki-Veronese, G., Laville�, Discovery of new protein families and functions: New challenges in functional metagenomics for biotechnologies and microbial ecology (2015) Frontiers in Microbiology, 6, p. 563. , https://doi.org/10.3389/fmicb.2015.00563PMC4456863, PMID: 26097471; Hirt, R.P., Muller, S., Embley, T.M., Coombs, G.H., The diversity and evolution of thioredoxin reductase: New perspectives (2002) Trends in Parasitology, 18 (7), pp. 302-308. , PMID: 12379950. . Epub 2002/10/17; Reith, F., Rogers, S.L., McPhail, D.C., Webb, D., Biomineralization of gold: Biofilms on bacterioform gold (2006) Science (New York, NY), 313 (5784), pp. 233-236. , https://doi.org/10.1126/science.1125878, PMID: 16840703. . Epub 2006/07/15; Reith, F., Fairbrother, L., Nolze, G., Wilhelmi, O., Clode, P.L., Gregg, A., Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation (2010) Geology, 38 (9), pp. 843-846. , https://doi.org/10.1130/G31052.1; Reith, F., Etschmann, B., Grosse, C., Moors, H., Benotmane, M.A., Monsieurs, P., Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans (2009) Proceedings of the National Academy of Sciences of the United States of America, 106 (42), pp. 17757-17762. , https://doi.org/10.1073/pnas.0904583106, PMID: 19815503; PubMed Central PMCID: PMCPMC2764933. . Epub 2009/10/10; Lacey, B.M., Hondal, R.J., Characterization of Mitochondrial Thioredoxin Reductase from C elegans (2006) Biochemical and Biophysical Research Communications, 346 (3), pp. 629-636. , https://doi.org/10.1016/j.bbrc.2006.05.095PMC3687220, PMID: 16780799; Zhao, S., Gong, H., Zhou, Y., Zhang, H., Cao, J., Zhou, J., Identification of a thioredoxin reductase from Babesia microti during mammalian infection (2016) Parasitology Research, 115 (8), pp. 3219-3227. , https://doi.org/10.1007/s00436-016-5084-4, PMID: 27164832. . Epub 2016/05/12; Watabe, S., Makino, Y., Ogawa, K., Hiroi, T., Yamamoto, Y., Takahashi, S.Y., Mitochondrial thioredoxin reductase in bovine adrenal cortex its purification, properties, nucleotide/amino acid sequences, and identification of selenocysteine (1999) European Journal of Biochemistry, 264 (1), pp. 74-84. , PMID: 10447675. . Epub 1999/08/14; Kanzok, S.M., Schirmer, R.H., Turbachova, I., Iozef, R., Becker, K., The thioredoxin system of the malaria parasite Plasmodium falciparum (2000) Glutathione Reduction Revisited. The Journal of Biological Chemistry, 275 (51), pp. 40180-40186. , https://doi.org/10.1074/jbc.M007633200, PMID: 11013257. . Epub 2000/10/03; Thon, M., Al-Abdallah, Q., Hortschansky, P., Brakhage, A.A., The thioredoxin system of the filamentous fungus Aspergillus nidulans: Impact on development and oxidative stress response (2007) The Journal of Biological Chemistry, 282 (37), pp. 27259-27269. , https://doi.org/10.1074/jbc.M704298200, PMID: 17631497. . Epub 2007/07/17; Brown, D.M., Upcroft, J.A., Upcroft, P., A thioredoxin reductase-class of disulphide reductase in the protozoan parasite Giardia duodenalis (1996) Molecular and Biochemical Parasitology, 83 (2), pp. 211-220. , http://dx.doi.org/10.1016/S0166-6851(96)02776-4, PMID: 9027754; Seo, H.J., Lee, Y.N., Characterization of Deinococcus radiophilus thioredoxin reductase active with both NADH and NADPH (2010) Journal of Microbiology (Seoul, Korea), 48 (5), pp. 637-643. , https://doi.org/10.1007/s12275-010-0283-7, PMID: 21046342. . Epub 2010/11/04; Gamal, M.M., (2014) Towards the Characterization of A Novel Thermohalophilic Antioxidant Thioredoxin from the Metagenome of the Red Sea, , http://dar.aucegypt.edu/handle/10526/3931, LCL of Atlantis II Brine Pool (Master's thesis), AUC, Cairo, Egypt; Pedrajas, J.R., Kosmidou, E., Miranda-Vizuete, A., Gustafsson, J.A., Wright, A.P., Spyrou, G., Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae (1999) The Journal of Biological Chemistry, 274 (10), pp. 6366-6373. , https://doi.org/10.1074/jbc.274.10.6366, PMID: 10037727. . Epub 1999/02/26; Eisenthal, R., Danson, M.J., Hough, D.W., Catalytic efficiency and kcat/KM: A useful comparator? (2007) Trends in Biotechnology, 25 (6), pp. 247-249. , https://doi.org/10.1016/j.tibtech.2007.03.010, PMID: 17433847. . Epub 2007/04/17; Bosshard, H.R., Marti, D.N., Jelesarov, I., Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings (2004) Journal of Molecular Recognition: JMR, 17 (1), pp. 1-16. , https://doi.org/10.1002/jmr.657, PMID: 14872533. . Epub 2004/02/12; Lee, C.W., Wang, H.J., Hwang, J.K., Tseng, C.P., Protein thermal stability enhancement by designing salt bridges: A combined computational and experimental study (2014) PloS One, 9 (11), p. e112751. , https://doi.org/10.1371/journal.pone.0112751, PMID: 25393107; PubMed Central PMCID: PMCPMC4231051. . Epub 2014/ 11/14; Eckenroth, B.E., Rould, M.A., Hondal, R.J., Everse, S.J., Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases (2007) Biochemistry, 46 (16), pp. 4694-4705. , https://doi.org/10.1021/bi602394p, PMID: 17385893; PubMed Central PMCID: PMCPMC3687216. . Epub 2007/03/28; Madern, D., Ebel, C., Zaccai, G., Halophilic adaptation of enzymes (2000) Extremophiles: Life under Extreme Conditions, 4 (2), pp. 91-98. , PMID: 10805563. . Epub 2000/05/11; Andrei, A.S., Banciu, H.L., Oren, A., Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems (2012) FEMS Microbiology Letters, 330 (1), pp. 1-9. , https://doi.org/10.1111/j.1574-6968.2012.02526.x, PMID: 22339687. . Epub 2012/02/22; Siglioccolo, A., Paiardini, A., Piscitelli, M., Pascarella, S., Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface (2011) BMC Structural Biology, 11, p. 50. , https://doi.org/10.1186/1472-6807-11-50, PMID: 22192175; PubMed Central PMCID: PMCPMC3293032. . Epub 2011/12/24; DasSarma, S., DasSarma, P., Halophiles and their enzymes: Negativity put to good use (2015) Current Opinion in Microbiology, 25, pp. 120-126. , https://doi.org/10.1016/j.mib.2015.05.009, PMID: 26066288; PubMed Central PMCID: PMCPMC4729366. . Epub 2015/06/13; Paul, S., Bag, S.K., Das, S., Harvill, E.T., Dutta, C., Molecular signature of hypersaline adaptation: Insights from genome and proteome composition of halophilic prokaryotes (2008) Genome Biology, 9 (4), p. R70. , https://doi.org/10.1186/gb-2008-9-4-r70, PMID: 18397532; PubMed Central PMCID: PMCPMC2643941. . Epub 2008/04/10; Oren, A., Adaptation of halophilic archaea to life at high salt concentrations (2002) Salinity: Environment-Plants-Molecules, pp. 81-96. , In: L�uchli A, L�ttge U, editors.. Dordrecht: Springer Netherlands; Yang, X., Ma, K., Characterization of a thioredoxin-thioredoxin reductase system from the hyperthermophilic bacterium thermotoga maritima (2010) Journal of Bacteriology, 192 (5), pp. 1370-1376. , https://doi.org/10.1128/JB.01035-09, PMID: 20061476; Kashima, Y., Ishikawa, K., A hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii (2003) Archives of Biochemistry and Biophysics, 418 (2), pp. 179-185. , PMID: 14522589. . Epub 2003/10/03; Gomes, E., De Souza, A.R., Orjuela, G.L., Da Silva, R., De Oliveira, T.B., Rodrigues, A., Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology (2016) Gene Expression Systems in Fungi: Advancements and Applications, pp. 459-492. , In: Schmoll M, Dattenb�ck C, editors.. Cham: Springer International Publishing; Cheng, Q., Stone-Elander, S., Arner, E.S., Tagging recombinant proteins with a Sel-tag for purification, labeling with electrophilic compounds or radiolabeling with 11C (2006) Nature Protocols, 1 (2), pp. 604-613. , https://doi.org/10.1038/nprot.2006.87, PMID: 17406287. . Epub 2007/04/05; Johansson, L., Chen, C., Thorell, J.O., Fredriksson, A., Stone-Elander, S., Gafvelin, G., Exploiting the 21st amino acid-purifying and labeling proteins by selenolate targeting (2004) Nature Methods, 1 (1), pp. 61-66. , https://doi.org/10.1038/nmeth707, PMID: 15782154. . Epub 2005/03/23; Johansson, L., Gafvelin, G., Arner, E.S., Selenocysteine in proteins-properties and biotechnological use (2005) Biochimica et Biophysica Acta, 1726 (1), pp. 1-13. , https://doi.org/10.1016/j.bbagen.2005.05.010, PMID: 15967579. . Epub 2005/06/22
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
journal.pone.0217565.pdf
Size:
2.65 MB
Format:
Adobe Portable Document Format
Description: