The protective effect of Korean red ginseng against rotenone-induced parkinsons disease in rat model: Modulation of nuclear factor- and caspase-3
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Zaafan M.A. | |
dc.contributor.author | Abdelhamid A.M. | |
dc.contributor.author | Ibrahim S.M. | |
dc.contributor.other | Pharmacology & Toxicology Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | MSA University | |
dc.contributor.other | Egypt; Biochemistry Department | |
dc.contributor.other | Faculty of Pharmacy | |
dc.contributor.other | MSA University | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:41Z | |
dc.date.available | 2020-01-09T20:40:41Z | |
dc.date.issued | 2019 | |
dc.description | Scopus | |
dc.description.abstract | Objective: Korean red ginseng was reported to have many biological effects like the antioxidant and the anti-inflammatory activities. Oxidative stress and neuro-inflammation play major roles in the pathogenesis of Parkinsons disease (PD). The current study aimed to investigate the protective effects of ginseng on rotenone-induced PD in rats. Methods: Rats were randomly allocated into 4 groups: Normal rats, rotenone control, ginseng+rotenone and ginseng only treated rats. The severity of PD was evaluated through locomotor activity perceived in the open field test, histological examination and immunohistochemical detection of amyloid-? in brain tissues, in addition to the biochemical assessment of tyrosine hydroxylase activity in brain tissues. Moreover, the following parameters were investigated for studying the possible mechanisms of ginseng neuroprotective effect: Nuclear factor-?? (NF-??), tumor necrosis factor-alpha (TNF-?), caspase- 3, lipid peroxides and reduced glutathione (GSH). Results: Ginseng exhibited potent neuroprotective effect that was reflected upon the histopathological examination, marked improvement in the locomotor activity and through its ability to suppress the amyloid-? deposition in the cortex and striatum along with significant increase in the tyrosine hydroxylase activity. Ginseng successfully inhibited the NF-?? inflammatory pathway in brain tissues beside the inhibition of other oxidative stress and inflammatory mediators. Furthermore, it exhibited antiapoptotic effect via the inhibition of caspase-3 expression. Conclusion: Ginseng could be a promising treatment in PD. It can suppress dopaminergic neuron degeneration through variable mechanisms mainly via inhibition of NF-?? pathway in addition to inhibition of oxidative stress and apoptosis. 2019 Bentham Science Publishers. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=15581&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.2174/1389201020666190611122747 | |
dc.identifier.doi | PubMed ID 31198107 | |
dc.identifier.issn | 13892010 | |
dc.identifier.other | https://doi.org/10.2174/1389201020666190611122747 | |
dc.identifier.other | PubMed ID 31198107 | |
dc.identifier.uri | https://t.ly/AZxY8 | |
dc.language.iso | English | en_US |
dc.publisher | Bentham Science Publishers | en_US |
dc.relation.ispartofseries | Current Pharmaceutical Biotechnology | |
dc.relation.ispartofseries | 20 | |
dc.subject | Anti-oxidant | en_US |
dc.subject | Caspase-3 | en_US |
dc.subject | Ginseng | en_US |
dc.subject | Nuclear factor-?? | en_US |
dc.subject | Parkinsons disease | en_US |
dc.subject | Rat model | en_US |
dc.subject | amyloid beta protein | en_US |
dc.subject | antiinflammatory agent | en_US |
dc.subject | antioxidant | en_US |
dc.subject | caspase 3 | en_US |
dc.subject | glutathione peroxidase | en_US |
dc.subject | immunoglobulin enhancer binding protein | en_US |
dc.subject | korean red ginseng | en_US |
dc.subject | lipid peroxidase | en_US |
dc.subject | malonaldehyde | en_US |
dc.subject | plant extract | en_US |
dc.subject | tumor necrosis factor | en_US |
dc.subject | tyrosine 3 monooxygenase | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | Casp3 protein, rat | en_US |
dc.subject | caspase 3 | en_US |
dc.subject | dopamine | en_US |
dc.subject | glutathione | en_US |
dc.subject | immunoglobulin enhancer binding protein | en_US |
dc.subject | neuroprotective agent | en_US |
dc.subject | plant extract | en_US |
dc.subject | rotenone | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antiinflammatory activity | en_US |
dc.subject | Article | en_US |
dc.subject | brain disease | en_US |
dc.subject | brain hemorrhage | en_US |
dc.subject | brain tissue | en_US |
dc.subject | controlled study | en_US |
dc.subject | drug mechanism | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | enzyme linked immunosorbent assay | en_US |
dc.subject | experimental parkinsonism | en_US |
dc.subject | ginseng | en_US |
dc.subject | gliosis | en_US |
dc.subject | histology | en_US |
dc.subject | histopathology | en_US |
dc.subject | immunohistochemistry | en_US |
dc.subject | immunomodulation | en_US |
dc.subject | locomotion | en_US |
dc.subject | male | en_US |
dc.subject | microscopy | en_US |
dc.subject | nerve cell degeneration | en_US |
dc.subject | neuroprotection | en_US |
dc.subject | nonhuman | en_US |
dc.subject | open field behavior | en_US |
dc.subject | open field test | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | polymerase chain reaction | en_US |
dc.subject | protein analysis | en_US |
dc.subject | protein expression | en_US |
dc.subject | pyknosis | en_US |
dc.subject | rat | en_US |
dc.subject | venous congestion | en_US |
dc.subject | animal | en_US |
dc.subject | animal behavior | en_US |
dc.subject | apoptosis | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effect | en_US |
dc.subject | isolation and purification | en_US |
dc.subject | metabolism | en_US |
dc.subject | Panax | en_US |
dc.subject | parkinsonism | en_US |
dc.subject | pathology | en_US |
dc.subject | randomization | en_US |
dc.subject | South Korea | en_US |
dc.subject | Wistar rat | en_US |
dc.subject | Animals | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Behavior, Animal | en_US |
dc.subject | Caspase 3 | en_US |
dc.subject | Dopamine | en_US |
dc.subject | Glutathione | en_US |
dc.subject | Male | en_US |
dc.subject | Neuroprotective Agents | en_US |
dc.subject | NF-kappa B | en_US |
dc.subject | Oxidative Stress | en_US |
dc.subject | Panax | en_US |
dc.subject | Parkinsonian Disorders | en_US |
dc.subject | Plant Extracts | en_US |
dc.subject | Random Allocation | en_US |
dc.subject | Rats, Wistar | en_US |
dc.subject | Republic of Korea | en_US |
dc.subject | Rotenone | en_US |
dc.title | The protective effect of Korean red ginseng against rotenone-induced parkinsons disease in rat model: Modulation of nuclear factor- and caspase-3 | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Connolly, B.S., Lang, A.E., Pharmacological treatment of Parkinson disease: A review (2014) JAMA, 311 (16), pp. 1670-1683. , http://dx.doi.org/10.1001/jama.2014.3654; Wang, X., Guan, Q., Wang, M., Yang, L., Bai, J., Yan, Z., Agingrelated rotenone-induced neurochemical and behavioral deficits: Role of SIRT2 and redox imbalance, and neuroprotection by AK-7 (2015) Drug Des. Devel. Ther., 9, pp. 2553-2563; Almeida, M.F., Silva, C.M., DUnhao, A.M., Ferrari, M.F., Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology (2016) Arq. Neuropsiquiatr., 74 (9), pp. 737-744. , http://dx.doi.org/10.1590/0004-282X20160121; Lee, Y.M., Yoon, H., Park, H.M., Song, B.C., Yeum, K.J., Implications of red Panax ginseng in oxidative stress associated chronic diseases (2017) J. Ginseng Res., 41 (2), pp. 113-119. , http://dx.doi.org/10.1016/j.jgr.2016.03.003; Radad, K., Gille, G., Moldzio, R., Saito, H., Rausch, W.D., Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate (2004) Brain Res., 1021 (1), pp. 41-53. , http://dx.doi.org/10.1016/j.brainres.2004.06.030; Lin, W.M., Zhang, Y.M., Moldzio, R., Rausch, W.D., Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture (2007) J. Neural. Transm. Suppl., 72, pp. 105-112; Hu, J.F., Song, X.Y., Chu, S.F., Chen, J., Ji, H.J., Chen, X.Y., Inhibitory effect of ginsenoside Rg1 on lipopolysaccharide-induced microglial activation in mice (2011) Brain Res., 16, pp. 8-14. , http://dx.doi.org/10.1016/j.brainres.2010.11.069; Ren, R., Shi, C., Cao, J., Sun, Y., Zhao, X., Guo, Y., Neuroprotective effects of a standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinsons disease (2016) Scientif. Rep., 6, p. 22135. , http://dx.doi.org/10.1038/srep22135; Lee, J.S., Choi, H.S., Kang, S.W., Chung, J.H., Park, H.K., Ban, J.Y., Kwon, O.Y., Ko, Y.G., Therapeutic effect of Korean red ginseng on inflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury (2011) Am. J. Chin. Med., 39 (1), pp. 83-94. , http://dx.doi.org/10.1142/S0192415X1100866X; Ban, J.Y., Kang, S.W., Lee, J.S., Chung, J.H., Ko, Y.G., Choi, H.S., Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats (2012) Exp. Ther. Med., 3 (4), pp. 693-698. , http://dx.doi.org/10.3892/etm.2012.449; Banchroft, P., Stevens, A., Turner, D.R., Theory and practice of histological techniques (1996) Churchil Livingstone, , 4th ed, London; Liu, M., Xu, H., Zhang, L., Zhang, C., Yang, L., Ma, E., Liu, L., Li, Y., Salvianolic acid B inhibits myofibroblast trans differentiation in experimental pulmonary fibrosis via the up-regulation of Nrf2 (2018) Biochem. Biophys. Res. Commun., 495 (1), pp. 325-331. , http://dx.doi.org/10.1016/j.bbrc.2017.11.014; Tukey, J.W., Reminder sheets for Discussion of paper on multiple comparisons by Henry Scheffe. In the collected work of John W. Tukey VIII. Multiple comparisons (1951) Chapman and Hall, , New York; Johnson, M.E., Bobrovskaya, L., An update on the rotenone models of Parkinsons disease: Their ability to reproduce the features of clinical disease and model gene-environment interactions (2015) Neurotoxicology, 46 (1), pp. 101-116. , http://dx.doi.org/10.1016/j.neuro.2014.12.002; De Souza, M.F., Bispo, J.M.M., Leal, P.C., De Gois, A.M., Dos Santos, J.R., Commentary: Adenosine A2A receptor blockade prevents rotenone-induced motor impairment in a rat model of parkinsonism (2017) Front. Behav. Neurosci., 11 (93), p. 93. , http://dx.doi.org/10.3389/fnbeh.2017.00093; Maniyath, S.P., Solaiappan, N., Rathinasamy, M., Neurobehavioural changes in a hemiparkinsonian rat model induced by rotenone (2017) J. Clin. Diagn. Res., 11 (3), pp. AF01-AF05. , http://dx.doi.org/10.7860/JCDR/2017/24955.9604; Kandil, E.A., Abdelkader, N.F., El-Sayeh, B.M., Saleh, S., Imipramine and amitriptyline ameliorate the rotenone model of Parkinsons disease in rats (2016) Neuroscience, 332 (1), pp. 26-37. , http://dx.doi.org/10.1016/j.neuroscience.2016.06.040; Rastogi, V., Santiago-Moreno, J., Dore, S., Ginseng: A promising neuroprotective strategy in stroke (2015) Front. Cell. Neurosci., 8 (457), p. 457. , http://dx.doi.org/10.3389/fncel.2014.00457; Fernandez-Moriano, C., Gonzalez-Burgos, E., Iglesias, I., Lozano, R., Gomez-Serranillos, M.P., Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stressmediated neurotoxicity in an (2017) Plos One, 12 (8). , http://dx.doi.org/10.1371/journal.pone.0182933; Thakur, P., Nehru, B., Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinsons disease (2015) Mol. Neurobiol., 51 (1), pp. 209-219. , http://dx.doi.org/10.1007/s12035-014-8769-7; Xu, W., Zheng, D., Liu, Y., Li, J., Yang, L., Shang, X., Glaucocalyxin B Alleviates Lipopolysaccharide-Induced Parkinsons Disease by Inhibiting TLR/NF-?B and Activating Nrf2/HO-1 Pathway (2017) Cell. Physiol. Biochem., 44 (6), pp. 2091-2104. , http://dx.doi.org/10.1159/000485947; Anusha, C., Sumathi, T., Joseph, L.D., Protective role of apigenin on rotenone induced rat model of Parkinsons disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis (2017) Chem. Biol. Interact., 269 (1), pp. 67-79. , http://dx.doi.org/10.1016/j.cbi.2017.03.016; Kim, K.H., Lee, D., Lee, H.L., Kim, C.E., Jung, K., Kang, K.S., Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: Past findings and future directions (2018) J. Ginseng Res., 42 (3), pp. 239-247. , http://dx.doi.org/10.1016/j.jgr.2017.03.011; Cui, H., Kong, Y., Zhang, H., Oxidative stress, mitochondrial dysfunction, and aging (2012) J. Signal Transduct., 2012 (10), p. 646354; Navarro-Yepes, J., Zavala-Flores, L., Anandhan, A., Wang, F., Skotak, M., Chandra, N., Li, M., Franco, R., Antioxidant gene therapy against neuronal cell death (2014) Pharmacol. Ther., 142 (2), pp. 206-230. , http://dx.doi.org/10.1016/j.pharmthera.2013.12.007; Dexter, D.T., Holley, A.E., Flitter, W.D., Slater, T.F., Wells, F.R., Daniel, S.E., Lees, A.J., Marsden, C.D., Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study (1994) Mov. Disord., 9 (1), pp. 92-97. , http://dx.doi.org/10.1002/mds.870090115; Ojha, S., Javed, H., Azimullah, S., Abul Khair, S.B., Haque, M.E., Neuroprotective potential of ferulic acid in the rotenone model of Parkinsons disease (2015) Drug Des. Devel. Ther., 9 (5), pp. 5499-5510; Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Agid, Y., Apoptosis and autophagy in nigral neurons of patients with Parkinsons disease (1997) Histol. Histopathol., 12 (1), pp. 25-31; Erekat, N.S., Al-Jarrah, M.D., Association of Parkinson disease induction with cardiac upregulation of apoptotic mediators P53 and active caspase-3: An immunohistochemistry study (2018) Med. Sci. Monit. Basic Res., 24 (1), pp. 120-126. , http://dx.doi.org/10.12659/MSMBR.910307; Liu, M.W., Wei, R., Su, M.X., Li, H., Fang, T.W., Zhang, W., Effects of Panax notoginseng saponins on severe acute pancreatitis through the regulation of mTOR/Akt and caspase-3 signaling pathway by upregulating miR-181b expression in rats (2018) BMC Complement. Altern. Med., 18 (1), pp. 018-2118 | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_128.png
- Size:
- 2.73 KB
- Format:
- Portable Network Graphics
- Description: