Glucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libyca

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAl-Gendy A.A.
dc.contributor.authorNematallah K.A.
dc.contributor.authorZaghloul S.S.
dc.contributor.authorAyoub N.A.
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt; Faculty of Pharmacy
dc.contributor.otherZagazig University
dc.contributor.otherZagazig
dc.contributor.otherEgypt; Faculty of Pharmacy
dc.contributor.otherBritish University in Egypt
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Pharmacy
dc.contributor.otherAin-Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Medicine
dc.contributor.otherUmm Al-Qura University
dc.contributor.otherMakkah
dc.contributor.otherSaudi Arabia
dc.date.accessioned2020-01-09T20:41:30Z
dc.date.available2020-01-09T20:41:30Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractContext: Brassicaceae plants are associated with protection against cancers due to their glucosinolate contents. Objectives: We investigate fresh leaves, roots and ripe seeds of Lobularia libyca (Viv.) C.F.W. Meissn. (Brassicaceae) to identify their glucosinolate constituents, antimicrobial and cytotoxic activities Materials and methods: The glucosinolates were identified using GC-MS analysis of their hydrolysis products and LC-MS analysis in the case of seeds. Disc diffusion (1 mg/disc) and minimum inhibitory concentration (0�160 ?g/mL) methods were used to evaluate the antimicrobial activity of seed hydrolysate. In vitro cytotoxicity against colorectal HCT-116, hepatic HUH-7, breast MCF-7 and lung A-549 cells was evaluated for seed hydrolysate (0.01�100 ?g/mL) using the sulforhodamine B assay and doxorubicin as a standard Results: Three glucosinolates were identified for the first time in this plant and genus Lobularia. Glucoiberverin was the major compound accumulated in the seeds and leaves, while glucoiberin and glucoerucin were detected only in the seeds. No glucosinolates were detected in roots under the same experimental conditions. Other volatile constituents, e.g., terpenes and fatty acids were only identified in the seeds. The seed hydrolysate showed significant antimicrobial activities against Candida albicans and Pseudomonas aeruoginosa (MIC = 64 and 82 ?g/mL, respectively). The seed hydrolysate exhibited a marked selective cytotoxicity in vitro against colorectal, hepatic and breast cancer cell lines. The IC 50 values were 0.31, 2.25 and 37 ?g/mL, respectively. Discussion and conclusion: The results indicated the antimicrobial activity of L. libyca and the selective effect of the seed hydrolysate as a cytotoxic drug that is potentially more active than doxorubicin against HCT-116. � 2016 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21082&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1080/13880209.2016.1223146
dc.identifier.doiPubMed ID 27597660
dc.identifier.issn13880209
dc.identifier.otherhttps://doi.org/10.1080/13880209.2016.1223146
dc.identifier.otherPubMed ID 27597660
dc.identifier.urihttps://t.ly/ndL5r
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.publisherTaylor and Francis Ltden_US
dc.relation.ispartofseriesPharmaceutical Biology
dc.relation.ispartofseries54
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectGC-MSen_US
dc.subjectglucoerucinen_US
dc.subjectglucoiberinen_US
dc.subjectGlucoiberverinen_US
dc.subjectLC-MSen_US
dc.subjectsulforhodamine Ben_US
dc.subjectantiinfective agenten_US
dc.subjectdoxorubicinen_US
dc.subjectglucosinolateen_US
dc.subjectprotein hydrolysateen_US
dc.subjectsulforhodamine Ben_US
dc.subjectvolatile agenten_US
dc.subjectcytotoxinen_US
dc.subjectglucosinolateen_US
dc.subjectplant extracten_US
dc.subjectantimicrobial activityen_US
dc.subjectArticleen_US
dc.subjectBrassicaceaeen_US
dc.subjectbreast canceren_US
dc.subjectbreast cancer cell lineen_US
dc.subjectCandida albicansen_US
dc.subjectcolorectal canceren_US
dc.subjectcontrolled studyen_US
dc.subjectcytotoxicityen_US
dc.subjectdisk diffusionen_US
dc.subjectgas chromatographyen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjecthydrolysisen_US
dc.subjectIC50en_US
dc.subjectin vitro studyen_US
dc.subjectliquid chromatographyen_US
dc.subjectliver canceren_US
dc.subjectLobularia libycaen_US
dc.subjectlung canceren_US
dc.subjectmass spectrometryen_US
dc.subjectminimum inhibitory concentrationen_US
dc.subjectplant leafen_US
dc.subjectplant rooten_US
dc.subjectplant seeden_US
dc.subjectPseudomonas aeruginosaen_US
dc.subjectA-549 cell lineen_US
dc.subjectBrassicaceaeen_US
dc.subjectcell survivalen_US
dc.subjectdose responseen_US
dc.subjectdrug effecten_US
dc.subjectHCT 116 cell lineen_US
dc.subjectisolation and purificationen_US
dc.subjectMCF-7 cell lineen_US
dc.subjectmicrobial sensitivity testen_US
dc.subjectphysiologyen_US
dc.subjectvolatilizationen_US
dc.subjectA549 Cellsen_US
dc.subjectAnti-Infective Agentsen_US
dc.subjectBrassicaceaeen_US
dc.subjectCell Survivalen_US
dc.subjectCytotoxinsen_US
dc.subjectDose-Response Relationship, Drugen_US
dc.subjectGlucosinolatesen_US
dc.subjectHCT116 Cellsen_US
dc.subjectHumansen_US
dc.subjectMCF-7 Cellsen_US
dc.subjectMicrobial Sensitivity Testsen_US
dc.subjectPlant Extractsen_US
dc.subjectPlant Leavesen_US
dc.subjectPlant Rootsen_US
dc.subjectSeedsen_US
dc.subjectVolatilizationen_US
dc.titleGlucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libycaen_US
dc.typeArticleen_US
dcterms.isReferencedByAdams, R.P., (2007) Identification of essential oils components by gas chromatography/mass spectrometry, , Illinois: Allured Publishing Corporation; Agerbirk, N., Olsen, C.E., Glucosinolate structures in evolution (2012) Phytochemistry, 77, pp. 16-45; Al-Gendy, A.A., El-Gindi, O.D., Hafez, A.S., Ateya, A.M., Glucosinolates, volatile constituents and biological activities of Erysimum corinthium Boiss. (Brassicaceae) (2010) Food Chem, 118, pp. 519-524; Al-Gendy, A.A., Lockwood, G.B., GC�MS analysis of volatile hydrolysis products from glucosinolates in Farsetia aegyptia var. ovalis (2003) Flavor Frag J, 18, pp. 148-152; Ares, A.M., Nozal, M.J., Bernal, J.L., Bernal, J., Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves (2014) Food Chem, 152, pp. 66-74; Ayoub, N., Nematallah, K.A., Al-Gendy, A.A., Zagloul, S.S., Novel quercetin glycoside with promising hepatoprotective activity isolated from Lobularia libyca (viv). C.F.W. (Brassicaceae) (2013) Euro Sci J, 9, pp. 177-193; Blazevic, I., Radonic, A., Skocibusic, M., De-Nicola, G.R., Montaut, S., Iori, R., Rollin, P., Maravic, A., Glucosinolate profiling and antimicrobial screening of Aurinia leucadea (Brassicaceae) (2011) Chem Biodiversity, 8, pp. 2310-2321; Bohinc, T., Ban, S.G., Ban, D., Trdan, S., Glucosinolates in plant protection strategies: a review (2012) Arch Biol Sci Belgrade, 64, pp. 821-828; Bones, A.M., Rossiter, J.T., The enzymic and chemically induced decomposition of glucosinolates (2006) Phytochemistry, 67, pp. 1053-1067; Cataldi, T.R.I., Rubino, A., Lelario, F., Bufo, S.A., Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry (2007) Rapid Commun Mass Spectrom, 21, pp. 2374-2388; Cole, R.A., Isothiocyanates, nitriles, and thiocyanates as products of autolysis of glucosinolates in Cruciferae (1976) Phytochemistry, 15, pp. 759-762; Dal, P.V., Jardim, N.S., Dolwitsch, C.B., Mazutti, M., Viana, C., Bohrer, D., Nascimento, P.C., de Carvalho, C.A., A review of influence of environment and process parameters on glucosinolate-myrosinase system from Brassica (2013) J Appl Pharm Sci, 3, pp. 121-128; Daxenbichler, M.E., Spencer, G.F., Carlson, D.G., Rose, G.B., Brinker, A.M., Powell, R.G., Glucosinolate composition of seeds from 297 species of wild plants (1991) Phytochemistry, 30, pp. 2623-2638; Dufour, V., Stahl, M., Baysse, C., The antibacterial properties of isothiocyanates (2015) Microbiology (Reading, Engl.), 161, pp. 229-243; El-Mokasabi, F.M., Floristic composition and traditional uses of plant species at Wadi Alkuf, Al-Jabal Al-Akhder, Libya (2014) American-Eurasian J Agric Environ Sci, 14, pp. 685-697; El-Toumy, S.A., El-Sharabasy, F.S., Ghanem, H.Z., El-Kady, M.U., Kassem, A.F., Phytochemical and pharmacological studies on Zilla spinosa (2011) Aust J Basic Appl Sci, 5, pp. 1362-1370; Fahey, J.W., Zalcmann, A.T., Talalay, P., The chemical diversity and distribution of glucosinolates and isothiocyanates among plants (2001) Phytochemistry, 56, pp. 5-51; Fimognari, C., Turrini, E., Ferruzzi, L., Lenzi, M., Hrelia, P., Natural isothiocyanates: genotoxic potential versus chemoprevention (2012) Mutat Res, 75, pp. 107-131; Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F.M., De-Lorenzo, G., Ferrari, S., The Atrboh D-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea (2008) Plant Physiol, 148, pp. 1695-1706; Hasapis, X., Macleod, A.J., Moreau, M., Glucosinolates of nine Cruciferae and two Capparaceae species (1981) Phytochemistry, 20, pp. 2355-2358; Hashem, F.A., Motawea, H., El-Shabrawy, A.E., Shaker, K., El-Sherbini, S., Myrosinase hydrolysates of Brassica oleraceae L. var. italica reduce the risk of colon cancer (2012) Phytother Res, 26, pp. 743-747; Inouye, S., Takizawa, T., Yamaguchi, H., Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact (2001) J Antimicrob Chemother, 47, pp. 565-573; Jacob, C., Anwar, A., The chemistry behind redox regulation with a focus on sulphur redox systems (2008) Physiol Plant, 133, pp. 469-480; Keck, A.S., Qiao, Q., Jeffery, E., Food matrix effects on bioactivity of broccoli-derived sulforaphane in liver and colon of F344 rats (2003) J Agric Food Chem, 51, pp. 3320-3327; Kjaer, A., Ohashi, M., Wilson, J.M., Djerassi, C., Mass spectra of isothiocyanates (1963) Acta Chem Scand, 17, pp. 2143-2154; Lelario, F., Bianco, G., Bufo, S.A., Cataldi, T.R.I., Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC�ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry (2012) Phytochemistry, 73, pp. 74-83; Li, X., Sun, D., Chen, J., He, L., Zhang, H., Xu, H., New sphingolipids from the root of Isatis indigotica and their cytotoxic activity (2007) Fitoterapia, 78, pp. 490-495; Lin, C.M., Kim, J.M., Du, W.X., Wei, C.I., Bactericidal activity of isothiocyanate against pathogens on fresh produce (2000) J Food Prot, 63, pp. 25-30; Manici, L.M., Lazzeri, L., Baruzzi, G., Leoni, O., Galletti, S., Palmieri, S., Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil (2000) Pest Manage Sci, 56, pp. 921-926; Mann, S.K., Khanna, N., Health promoting effects of phytochemicals from Brassicaceae: a review (2013) Indian J Pharm Biol Res, 1, pp. 120-131; Marzouk, M.M., Flavonoid constituents and cytotoxic activity of Erucaria hispanica (L.) Druce growing wild in Egypt (2011) Arab J Chem, , http://www.sciencedirect.com/science/article/pii/S1878535211001316; Marzouk, M.M., Elkhateeb, A., Ibrahim, L.F., Hussein, S.R., Kawashty, S.A., Two cytotoxic coumarin glycosides from the aerial parts of Diceratella elliptica (DC.) Jonsell growing in Egypt (2012) Rec Nat Prod, 6, pp. 237-241; Mastelic, J., Blazevic, I., Kosalec, I., Chemical composition and antimicrobial activity of volatiles from Degenia velebitica, a European stenoendemic plant of the Brassicaceae family (2010) Chem Biodiversity, 7, pp. 2755-2765; Mithen, R.F., Glucosinolates and their degradation products (2001) Adv Bot Res, 35, pp. 213-262; Nastruzzi, C., Cortesi, R., Esposito, E., Menegatti, E., Leoni, O., Iori, R., Palmieri, S., In vitro cytotoxic activity of some glucosinolate-derived products generated by myrosinase hydrolysis (1996) J Agric Food Chem, 44, pp. 1014-1021; (1997) M7-A4 Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approved standard, , 4th ed, Wayne, PA: Clinical and Laboratory Standards Institute; (2002) M27�MA2 Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard, , 2nd ed, Wayne, PA: Clinical and Laboratory Standards Institute; Nielsen, P.V., Rios, R., Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil (2000) Int J Food Microbiol, 60, pp. 219-229; Nuchanart, R., Nicolas, M.E., Bennett, R.N., Premier, R.R., Eagling, D.R., Taylor, P.W.J., Determination of sinigrin and glucoraphanin in Brassica species using a simple extraction method combined with ion-pair HPLC analysis (2002) Sci Hortic, 96, pp. 27-41; Osbourn, A.E., Preformed antimicrobial compounds and plant defense against fungal attack (1996) Plant Cell, 8, pp. 1821-1831; Radulovic, N.S., Dekic, M.S., Stojanovic�-Radic, Z.Z., Antimicrobial volatile glucosinolate autolysis products from Hornungia petraea (L.) Rchb. (Brassicaceae) (2012) Phytochem Lett, 5, pp. 351-357; Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., Meijer, J., Myrosinase: gene family evolution and herbivore defense in Brassicaceae (2000) . Plant Mol Biol, 42, pp. 93-113; Rochfort, S.J., Trenerry, V.C., Ismic, M., Panozzo, J., Jones, R., Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation (2008) Phytochemistry, 69, pp. 1671-1679; Rosa, E.A.S., Rodrigez, P.M.F., Towards a more sustainable agriculture system: The effect of glucosinolates of the control of soil borne diseases (1999) J Hortic Sci Biotechnol, 74, pp. 667-674; Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) J Natl Cancer Inst, 82, pp. 1107-1112; Spencer, G.F., Daxenbichler, M.E., Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates (1980) J Sci Food Agric, 31, pp. 359-367; Srisawat, T., Chumkaew, P., Heed-Chim, W., Sukpondma, Y., Kanokwiroon, K., Phytochemical screening and cytotoxicity of crude extracts of Vatica diospyroides Symington Type LS (2013) Trop J Pharm Res, 12, pp. 71-76; Staack, R., Kingston, S., Wallig, M.A., Jeffery, E.H., A comparison of the individual and collective effects of four glucosinolate breakdown products from Brussels sprouts on induction of detoxification enzymes (1998) Toxicol Appl Pharmacol, 149, pp. 17-23; Talalay, P., Zhang, Y., Chemoprotection against cancer by isothiocyanates and glucosinolates (1996) Biochem Soc Trans, 24, pp. 806-810; T�ckholm, V., (1974) Students� Flora of Egypt, , Beirut, Lebanon: Cairo University and Cooperative Printing Co; Verterk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health (2009) Mol Nutr Food Res, 53, pp. 219-265; Vig, A.P., Rampal, G., Thind, T.S., Arora, S., Bio-protective effects of glucosinolates: a review (2009) LWT - Food Sci Technol, 42, pp. 1561-1572; Wilson, A.E., Bergaentzl�, M., Bindler, F., Marchioni, E., Lintz, A., Ennahar, S., In vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria (2013) Food Control, 30, pp. 318-324; Wittstock, U., Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J., Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores (2003) Recent Adv Phytochem, 37, pp. 101-126; Zaghloul, S.S., Nematallah, K.A., Al-Gendy, A.A., Ayoub, N., Botanical and genetic characteristics of Lobularia libyca (viv). C.F.W. Meissn. (Brassicaceae) (2014) Int J Pharmacog Phytochem Res, 6, pp. 164-175; Zasada, I.A., Ferris, H., Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles (2004) Soil Biol Biochem, 36, pp. 1017-1024
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Glucosinolates profile volatile constituents antimicrobial and cytotoxic activities of Lobularia libyca.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description: