Effect of Iron Slag on the Corrosion Resistance of Soda Lime Silicate Glass
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | El-Alaily N.A. | |
dc.contributor.author | Abd-Elaziz T.D. | |
dc.contributor.author | Soliman L. | |
dc.contributor.other | National Center for Radiation Research and Technology | |
dc.contributor.other | Nasr City | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; October University for Modern Sciences and Arts (MSA) | |
dc.contributor.other | 6th October City | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:41:04Z | |
dc.date.available | 2020-01-09T20:41:04Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description.abstract | Soda lime silicate glasses containing different amounts of iron slag 30 % were prepared. The chemical durability of the prepared glasses was examined by immersion in HCl or HNO3 solutions at room temperature. The results show that the glass durability increases with increasing the amount of slag in the glass composition to a certain amount, then followed by a decrease in the glass durability. Various mechanisms of corrosion and the role of the mobility of cations and their leaching into solution, also the effect of time of leaching are discussed. The densities of all glass compositions were measured. The quantitative analysis obtained from infrared absorption spectra in the range of (400 4000) cm?1 in relation to the effect of corrosion on the absorption spectra has been studied in terms of structural concepts. The topography of the glass surfaces was observed by scanning electron microscopy (SEM). The concentration percentage of the ions present on the glass surface was determined by Energy Dispersive X-ray analysis (EDX). 2015, Springer Science+Business Media Dordrecht. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19400158637&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1007/s12633-015-9340-5 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 1876990X | |
dc.identifier.other | https://doi.org/10.1007/s12633-015-9340-5 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/MX6yd | |
dc.language.iso | English | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.ispartofseries | Silicon | |
dc.relation.ispartofseries | 10 | |
dc.subject | Glass durability | en_US |
dc.subject | Iron slag | en_US |
dc.subject | SEM | en_US |
dc.subject | Silicate glass | en_US |
dc.subject | Corrosion | en_US |
dc.subject | Corrosion resistance | en_US |
dc.subject | Durability | en_US |
dc.subject | Electromagnetic wave absorption | en_US |
dc.subject | Energy dispersive X ray analysis | en_US |
dc.subject | Fourier transform infrared spectroscopy | en_US |
dc.subject | Fused silica | en_US |
dc.subject | Iron | en_US |
dc.subject | Leaching | en_US |
dc.subject | Light absorption | en_US |
dc.subject | Lime | en_US |
dc.subject | Nitric acid | en_US |
dc.subject | Scanning electron microscopy | en_US |
dc.subject | Silicates | en_US |
dc.subject | Slags | en_US |
dc.subject | X ray analysis | en_US |
dc.subject | Chemical durability | en_US |
dc.subject | Energy dispersive x-ray analysis (EDX) | en_US |
dc.subject | Glass compositions | en_US |
dc.subject | Glass durability | en_US |
dc.subject | Iron slags | en_US |
dc.subject | Silicate glass | en_US |
dc.subject | Soda lime silicate glass | en_US |
dc.subject | Structural concept | en_US |
dc.subject | Glass | en_US |
dc.title | Effect of Iron Slag on the Corrosion Resistance of Soda Lime Silicate Glass | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Bagheri, A., Zanganeh, H., Moalemi, M., Mechanical and durability properties of ternary concretes containing silica fume and low reactivity blast furnace slag (2012) Cem Concr Compos, 34 (5), pp. 663-670. , COI: 1:CAS:528:DC%2BC38XivFWqtrs%3D; Clark, D., Pantano, C., Hench, L., (1979) Corrosion of Glass, , Magazines for Industry, Inc., New York; El-Alaily, N., Study of some properties of lithium silicate glass and glass ceramics containing blast furnace slag (2003) Eur J Glass Sci Technol, Part A, 44 (1), pp. 30-35. , COI: 1:CAS:528:DC%2BD3sXlsFais7k%3D; Kowal, T., Krajczyk, L., Macalik, B., Nierzewski, K., Okuno, E., Suszynska, M., Szmida, M., Yoshimura, E., Some effects of gamma irradiation in Soda lime silicate glasses (2000) Nucl Instrum Methods Phys Res, Sect B Beam Interactions with Materials and Atoms, 166 (2000), pp. 490-494; Ozdemir, I., Yilmaz, S., Processing of unglazed ceramic tiles from blast furnace slag (2007) J Mater Process Technol, 183 (1), pp. 13-17. , COI: 1:CAS:528:DC%2BD2sXhsVSisrs%3D; El-Alaily, N., Ahmed, L., Durability of gamma-irradiated fiber glass in acidic or alkaline solutions (2002) Glass Technol, 43 (2), pp. 80-88. , COI: 1:CAS:528:DC%2BD38XnsV2juro%3D; Greaves, G.N., EXAFS for studying corrosion of glass surfaces (1990) J Non-Cryst Solids, 121, pp. 108-116; Lehman, R., Lead-ion stability in soda-lime lead silicate glasses (1992) J Am Ceram Soc, 75 (8), pp. 2194-2199. , COI: 1:CAS:528:DyaK38XlsFGqurs%3D; El-Alaily, N.A., Abou-Hussein, E.M., Abdel-Monem, Y.K., AbdElaziz, T.D., Ezz-Eldin, F.M., Vitrified municipal waste as a host for high level waste (2014) J Radioanal Nucl Chem, 299 (1), pp. 65-73. , COI: 1:CAS:528:DC%2BC3sXhs1CgurfO; Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F., Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag � Part II: Effect of Al2O3 (2012) Cem Concr Res, 42 (1), pp. 74-83; Doremus, R., (1994) Glass science, , 2nd ed, Wiley, New York; Ernesberger, F., (1986) Current Theories of Glass Durablity. In: 14th International Glass Congress, New Delhi, p 319; Olbert, B., Schenck, S., Fracture of an aluminosilicate fiberboard (1997) J Am Ceram Soc, 80 (11), pp. 2789-2797. , COI: 1:CAS:528:DyaK2sXntFyrsbw%3D; Perera, G., Doremus, R., Dissolution rates of commercial soda-lime and pyrex borosilicate glasses: influence of solution pH (1991) J Am Ceram Soc, 74 (7), pp. 1554-1558. , COI: 1:CAS:528:DyaK3MXkvFOmtbw%3D; Perry, R., Green, D., (2008) Perry�s chemical engineers� handbook, , 8th ed, McGraw-Hill, New York; Arbuzov, V., Carl, G., Durschang, B., R�ssel, C., Study of the thermally stimulated glass structure reconstruction in extruded Li2O�.2SiO2 glasses by the method of radiation color center chronospectroscopy (1998) J Non-Crystal Solids, 231 (1-2), pp. 125-133. , COI: 1:CAS:528:DyaK1cXksFWhsb8%3D; Abo-Naf, S., El Batal, F., Azooz, M., Characterization of some glasses in the system SiO2, Na2O�.RO by infrared spectroscopy (2003) Mater Chem Phys, 77 (3), pp. 846-852. , COI: 1:CAS:528:DC%2BD38XmvVCgurw%3D; Ramadevudu, G., Laxmisrinivasa Rao, S., Abdul Hameed, S., Shareefuddin, M., Narasimha, C., FTIR and some physical properties of Alkali Earth Borate glasses containing heavy metal oxides (2011) Int J Eng Sci Technol (IJEST), 9, pp. 6998-7005; Hofmeister, A., Keppel, E., Speck, A., Absorption and reflection infrared spectra of MgO and other diatomic compounds (2003) Mon Not R Astron Soc, 345 (1), pp. 16-38. , COI: 1:CAS:528:DC%2BD3sXptVyitrY%3D; El-Hadi, Z.A., Khalifa, F.A., El-Kheshen, A.A., Moustafa, F.A., Structure of high lead silicate glasses containing Divalent, Trivalent, Tetravalent Cations as Determined by nVibretional spectroscopy (1995) Commun Fac Sci Univ Ank Series B, 41, pp. 1-17. , COI: 1:CAS:528:DyaK28XlsVWkurg%3D; Sander, D.M., Porson, W.B., Hench, L.L., Quantitative analysis of glass structure with the use of infrared reflection spectra (1974) Appl Spectrosc, 28 (3), pp. 247-255; Elmer, T., Leaching of E-Glass (1984) J Am Soc, 67 (12), pp. 778-782. , COI: 1:CAS:528:DyaL2MXhtFyht7s%3D | |
dcterms.source | Scopus |