Role Phytochemicals Play in the Activation of Antioxidant Response Elements (AREs) and Phase II Enzymes and Their Relation to Cancer Progression and Prevention

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEzzat, Shahira M
dc.contributor.authorEl-Halawany A.M.
dc.contributor.authorHamed A.R.
dc.contributor.authorAbdel-Sattar E.
dc.contributor.otherDepartment of Pharmacognosy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherCairo University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Pharmacognosy Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Science and Arts (MSA)
dc.contributor.other6th October
dc.contributor.otherEgypt; Phytochemistry Department
dc.contributor.otherNational Research Centre
dc.contributor.otherGiza
dc.contributor.otherEgypt; Biology Unit
dc.contributor.otherCentral Laboratory for Pharmaceutical and Drug Industries Research Division
dc.contributor.otherNational Research Centre
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:08Z
dc.date.available2020-01-09T20:41:08Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractChemoprevention can be defined as a means of controlling cancer in which the incidence of the disease can be entirely prevented, slowed down, or reversed. Chemoprevention is acquiring great attention because it is a cost-effective alternative to cancer treatment, such as chemotherapy or radio-therapeutic programs, which should reduce the burden on local and global economies. There is increasing interest in studying the chemoprevention potentiality of natural compounds against cancer as a result of the reduced cancer risk in people who consume high amounts of phytochemicals in their diet. Chemoprevention may involve the interruption or reversal of the initiation and progression of the disease by setting targets with the goal of preventing end stage invasiveness and metastasis. The initiation stage of cancer can be stopped by preventing reactive oxygen species and/or carcinogen activity (i.e., scavenging free radicals or trapping carcinogens) or by inhibiting their metabolic activation, thereby suppressing their interaction with cellular macromolecular targets, such as DNA, RNA, and proteins. This can be achieved by inducing of a set of phase II detoxifying and antioxidant enzymes, such as the chemopreventive marker NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase (HO-1). NQO1 is a ubiquitous flavoenzyme that plays a crucial role in protecting cells from endogenous and exogenous oxidative stressors by catalyzing two- and four-electron reductions of these substrates to their hydroquinone forms. The expression of NQO1 in different tissues is regulated by antioxidant response elements (AREs) under both basal and oxidative stress conditions. NQO1 is known to be regulated by nuclear factor erythroid-derived related factor 2 (Nrf2), which belongs to the basic leucine zipper transcription factor family, and binds to AREs, leading to the expression of many cytoprotective and antioxidant genes. Since Nrf2 binds to AREs and regulates the expression and induction of NQO1, Nrf2 knockout causes a reduction in the constitutive expression of NQO1 and impairs its induction. Several vegetables and fruits, including blueberries, cocoa beans, cabbage, broccoli, and cauliflower, are among the most protective agents against cancer. This is specifically due to their high content of active phytochemicals, such as sulforaphanes, isothiocyanates, polyphenols, and flavonoids. Upon entering cells these chemicals can directly counteract free radicals and induce electrophilic stress signals that trigger proteins linked to diverse cellular signaling pathways. This capability involves activation of the NQO1 gene and other phase II detoxification genes by activating the Nrf2/Kelch-like ECH-associated protein (Keap1) complex system. This chapter reports the chemopreventive effect of dietary components or their phytochemicals by activating the Nrf2�Keap1/ARE pathway and inducing NQO1. � 2018 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=19700180785&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/B978-0-444-64181-6.00009-7
dc.identifier.doiPubMed ID :
dc.identifier.issn15725995
dc.identifier.otherhttps://doi.org/10.1016/B978-0-444-64181-6.00009-7
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/R0W0q
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesStudies in Natural Products Chemistry
dc.relation.ispartofseries60
dc.subjectAntioxidant response elementsen_US
dc.subjectChemopreventionen_US
dc.subjectNAD(P)H:quinone oxidoreductase 1en_US
dc.subjectNuclear factor erythroid-derived related factor 2en_US
dc.subjectPhytochemicalsen_US
dc.titleRole Phytochemicals Play in the Activation of Antioxidant Response Elements (AREs) and Phase II Enzymes and Their Relation to Cancer Progression and Preventionen_US
dc.typeBook Chapteren_US
dcterms.isReferencedByZahrani, A., Initiative to Improve Cancer Care in the Arab World (ICCAW) (2010), pp. 146-157. , National Guard Health Affairs, KSA Riyadh, KSA; Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 (2012), Int Agency Res Cancer (IARC publications); WHO Cancer, (2018), http://www.who.int/mediacentre/factsheets/fs297/en/; Vineis, P., Wild, C.P., (2014) Lancet, 383 (9916), pp. 549-557; Forouzanfar, M.H., (2015) Lancet, 386 (10010), pp. 2287-2323; LoConte, N.K., Brewster, A.M., Kaur, J.S., Merrill, J.K., Alberg, A.J., Alcohol and cancer: a statement of the American Society of Clinical Oncology (2018) J Clin Oncol, 36 (1), pp. 83-93; Glade, M.J., (1999) Nutrition, 15 (6), pp. 523-526; Ames, B.N., Gold, L.S., (1998) Biotherapy, 11 (2-3), pp. 205-220; Oyeyemi, I.T., Bakare, A.A., (2013) Caryologia, 66 (4), pp. 360-367; Aruoma, O.I., (1994) Food Chem. Toxicol., 32 (7), pp. 671-683; Willcox, J.K., Ash, S.L., Catignani, G.L., (2004) Crit. Rev. Food Sci. Nutr., 44 (4), pp. 275-295; Zhou, Z., Kang, Y.J., (2000) J. Histochem. Cytochem., 48 (5), pp. 585-594; Hwang, Y.P., Jeong, H.G., (2008) Toxicol. Appl. Pharmacol., 233 (3), pp. 371-381; Birben, E., (2012) World Allergy Organ. J., 5 (1), pp. 9-19; Hayes, J.D., (2010) Antioxid. Redox Signal., 13 (11), pp. 1713-1748; Villeneuve, N.F., Lau, A., Zhang, D.D., (2010) Antioxid. Redox Signal., 13 (11), pp. 1699-1712; Dinkova-Kostova, A.T., Kostov, R.V., (2012) Trends Mol. Med., 18 (6), pp. 337-347; Chen, C., Kong, A.N., (2005) Trends Pharmacol. Sci., 26 (6), pp. 318-326; Holtzclaw, W.D., Dinkova-Kostova, A.T., Talalay, P., (2004) Adv. Enzyme Regul., 44, pp. 335-367; Dinkova-Kostova, A.T., Talalay, P., (2010) Arch. Biochem. Biophys., 501 (1), pp. 116-123; Ahmed, S.M.U., (2017) Biochim. Biophys. Acta, 1863 (2), pp. 585-597; Stefanson, A.L., Bakovic, M., (2014) Nutrients, 6 (9), pp. 3777-3801; Mattson, M.P., Cheng, A., (2006) Trends Neurosci., 29 (11), pp. 632-639; de Haan, L.H., (2006) Toxicol. In Vitro, 20 (5), pp. 594-600; Ma, Z., Zhang, M., Song, Z., (2009) Rapid Commun. Mass Spectrom., 23 (18), pp. 2857-2866; Gillies, P.J., (2007) Nutr. Rev., 65 (12), pp. S217-S220; Reddy, L., Odhav, B., Bhoola, K.D., (2003) Pharmacol. Ther., 99 (1), pp. 1-13; Wu, T.Y., (2011) AAPS J., 13 (1), pp. 1-13; Asl, M.N., Hosseinzadeh, H., (2008) Phytother. Res., 22 (6), pp. 709-724; Shunying, Z., (2005) J. Ethnopharmacol., 96 (1-2), pp. 151-158; Cheng, W., (2005) J. Ethnopharmacol., 101 (1-3), pp. 334-337; Jeong, W.S., (2005) J. Biochem. Mol. Biol., 38 (2), pp. 167-176; Khor, T.O., (2006) Cancer Res., 66 (24), pp. 11580-11584; Oliveira-Marques, V., (2009) Antioxid. Redox Signal., 11 (9), pp. 2223-2243; Pan, M.-H., (2013) Food Sci. Human Wellness, 2 (1), pp. 12-21; Saha, P., Das, S., (2002) Asian Pac. J. Cancer Prev., 3 (3), pp. 225-230; Roy, P., (2009) Cancer Biol. Ther., 8 (13), pp. 1281-1287; George, J., (2011) PLoS One, 6 (8), p. e23395; Roy, P., (2011) Invest. New Drugs, 29 (2), pp. 225-231; Chandra Mohan, K.V., (2005) Clin. Biochem., 38 (10), pp. 879-886; Patel, R., Ingle, A., Maru, G.B., (2008) Toxicol. Appl. Pharmacol., 227 (1), pp. 136-146; Sinha, D., Roy, M., (2011) J. Environ. Pathol. Toxicol. Oncol., 30 (4), pp. 311-322; Chen, C., Kong, A.N.T., (2004) Free Radic. Biol. Med., 36 (12), pp. 1505-1516; Surh, Y.J., Kundu, J.K., Na, H.K., (2008) Planta Med., 74 (13), pp. 1526-1539; Cho, B.O., (2011) J. Agric. Food Chem., 59 (21), pp. 11442-11448; Giudice, A., Montella, M., (2006) Bioessays, 28 (2), pp. 169-181; Zhang, Q., (2010) Toxicol. Appl. Pharmacol., 244 (1), pp. 84-97; Wang, X., (2010) J. Ethnopharmacol., 127 (2), pp. 424-432; Shih, P.H., Yen, G.C., (2007) Biogerontology, 8 (2), pp. 71-80; Chen, M., (2004) J. Infect. Dis., 190 (1), pp. 127-135; Cong, Z.X., Wang, H.D., Wang, J.W., Pan, H., Zhou, Y., (2013) Shandong Med. J., 53, pp. 14-16; Fei Wang, H.W., (2017) Biomed. Res., 28 (8), pp. 3383-3386; Keum, Y.S., Choi, B.Y., (2014) Molecules, 19 (7), pp. 10074-10089; Kumar, H., (2014) Nat. Prod. Rep., 31 (1), pp. 109-139; Nakano, K., (1988) J. Chromatogr., 438 (1), pp. 61-72; Wu, S., (2013) J. Ethnopharmacol., 148 (2), pp. 570-578; Luo, L., (2012) Food Chem., 131 (3), pp. 992-998; Liang, L., (2013) J. Agric. Food Chem., 61 (11), pp. 2755-2761; Roubalov�, L., (2017) Fitoterapia, 119, pp. 115-120; Mostafavi-Pour, Z., (2017) Oncol. Lett., 13 (3), pp. 1965-1973; Peng, S., (2017) Food Funct., 8 (3), pp. 997-1007; Wang, W., (2016) Phytochemistry, 131, pp. 107-114; Wang, W., (2015) Bioorg. Med. Chem. Lett., 25 (5), pp. 1078-1081; Su, X., (2016) Pharmacol. Res., 113, pp. 695-704; Jeong, Y.-H., (2016) Biomol. Ther., 24 (6), p. 581; Lee, S., (2015) Int. Immunopharmacol., 28 (1), pp. 328-336; Park, S.Y., (2016) Neurochem. Res., 41 (11), pp. 2981-2992; Huang, J.Y., (2016) Acta Pharmacol. Sin., 37 (6), pp. 731-740; Lee, E.-J., (2015) J. Neuroinflammation, 12 (1), p. 133; Wang, P., (2015) Biochim. Biophys. Acta, 1850 (9), pp. 1751-1761; Park, S.Y., (2014) Environ. Toxicol. Pharmacol., 38 (3), pp. 701-710; Li, N., (2014) J. Ethnopharmacol., 152 (3), pp. 508-521; Zhu, Y., (2016) Free Radic. Biol. Med., 95, pp. 243-254; Buommino, E., (2017) Microb. Pathog., 108, pp. 71-77; Ding, S., (2015) Int. Immunopharmacol., 29 (2), pp. 648-655; Sutariya, B., Taneja, N., Saraf, M., (2017) Chem. Biol. Interact., 274, pp. 124-137; Shahat, A.A., (2016) Indian J. Tradit. Knowl., 15, pp. 232-236; Ye, M., (2012) Chin. Chem. Lett., 23 (10), pp. 1157-1160; Haridas, V., (2004) J. Clin. Invest., 113 (1), pp. 65-73; Park, S.Y., Kim, Y.H., Park, G., (2015) Neurosci. Lett., 609, pp. 129-136; Qi, Z., (2017) Biomed. Pharmacother., 88, pp. 252-259; Sasaki, S., (2013) Neurosci. Lett., 548, pp. 132-136; Holland, R., (2009) Chem. Res. Toxicol., 22 (8), pp. 1427-1434; Zhu, H., (2009) Exp. Biol. Med., 234 (4), pp. 418-429; Zhu, H., (2008) Cardiovasc. Toxicol., 8 (3), p. 115; Youn, U.J., (2016) J. Nat. Prod., 79 (6), pp. 1508-1513; Koriyama, Y., (2010) J. Neurochem., 115 (1), pp. 79-91; Wu, Z., (2016) Tetrahedron, 72 (1), pp. 50-57; Jaramillo, M.C., Zhang, D.D., (2013) Genes Dev., 27 (20), pp. 2179-2191; Jnoff, E., (2014) ChemMedChem, 9 (4), pp. 699-705
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Book-2PhytochemicalsPlay.pdf
Size:
820.01 KB
Format:
Adobe Portable Document Format
Description: