1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Amin, Heba M | |
dc.contributor.author | Hashem, Abdelgawad M | |
dc.contributor.author | Ashour, Mohamed S | |
dc.contributor.author | Hatti-Kaul, Rajini | |
dc.date.accessioned | 2019-11-03T15:03:20Z | |
dc.date.available | 2019-11-03T15:03:20Z | |
dc.date.issued | 06/01/2013 | |
dc.description | MSA Google Scholar | |
dc.description.abstract | The objective of the presented work is to demonstrate the metabolism of 1,2 propandiol by Lactobacillus reuteri and to elucidate the metabolites produced during the process. This Metabolic pathway is crucial for biotechnological applications using L. reuteri in bioconversion of glycerol to industrially important plate-form chemicals. L. reuteri grown on minimal media containing 1,2 propanediol was able to utilize the compound as a sole carbon and energy source. The growth of the bacteria was linear with time; however the specific growth rate was significantly low compared to bacteria grown on the same media in the presence of glucose. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=21100463067&tip=sid&clean=0 | |
dc.identifier.citation | H. Biebl Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies J. Ind. Microbiol. Biotechnol., 27 (2001), pp. 18-26 CrossRefView Record in ScopusGoogle Scholar [2] T.A. Bobik, G.D. Havemann, R.J. Busch, D.S. Williams, H.C. Aldrich The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation J. Bacteriol., 181 (1999), pp. 5967-5975 View Record in ScopusGoogle Scholar [3] Y.H. Chang, J.K. Kim, H.J. Kim, W.Y. Kim, Y.B. Kim, Y.H. Park Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies Antonie Van Leeuwenhoek, 80 (2001), pp. 193-199 View Record in ScopusGoogle Scholar [4] P. Chen, D.I. Andersson, J.R. Roth The control region of the pdu/cob regulon in Salmonella typhimurium J. Bacteriol., 176 (1994), pp. 5474-5482 CrossRefView Record in ScopusGoogle Scholar [5] T.C. Chung, L. Axelsson, S.E. Lindgren, W.J. Dobrogosz In vitro studies on reuterin synthesis by Lactobacillus reuteri Microb. Ecol. Health Dis., 2 (1989), pp. 137-144 CrossRefView Record in ScopusGoogle Scholar [6] T. Colin, A. Bories, C. Lavigne, G. Moulin Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum Curr. Microbiol., 43 (2001), pp. 238-243 View Record in ScopusGoogle Scholar [7] G.P. Da Silva, M. Mack, J. Contiero Glycerol: a promising and abundant carbon source for industrial microbiology Biotechnol. Adv., 27 (2009), pp. 30-39 ArticleDownload PDFView Record in ScopusGoogle Scholar [8] H.M. Amin, T. Dishisha, A.M. Hashem, M.S. Ashour, R. Hatti-Kaul, Biotransformation of glycerol to 1,3 propanediol by L. reuteri ATCC 20016 in aqueous system, in: Alex-Biovision conference 2012, 2012. Google Scholar [9] G.D. Havemann, T.A. Bobik Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2 J. Bacteriol., 185 (2003), pp. 5086-5095 View Record in ScopusGoogle Scholar [10] H. Huang, C.S. Gong, G.T. Tsao Production of 1,3-propanediol by Klebsiella pneumoniae Appl. Biochem. Biotechnol., 98–100 (2002), pp. 687-698 CrossRefView Record in ScopusGoogle Scholar [11] R.M. Jeter Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium J. Gen. Microbiol., 136 (1990), pp. 887-896 CrossRefView Record in ScopusGoogle Scholar [12] J.M. Shively, C.E. Bradburne, H.C. Aldrich, T.A. Bobik, J.L. Mehlman, et al. Sequence homologs of the carboxysomal polypeptide CsoS1 of the thiobacilli are present in cyanobacteria and entericbacteria that form carboxysomes-polyhedral bodies Can. J. Bot., 76 (1998), pp. 906-916 View Record in ScopusGoogle Scholar [13] Cheryl A. Kerfeld, Sabine Heinhorst, Gordon C. Cannon Bacterial microcompartments Annu. Rev. Microbiol., 64 (2010), pp. 391-408 CrossRefView Record in ScopusGoogle Scholar [14] J. Krooneman, F. Faber, A.C. Alderkamp, S.J.H.W. Oude Elferink, F. Driehuis, I. Cleenwerck, J. Swings, J.C. Gottschal, M. Vancanneyt Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage Int. J. Syst. Evol. Microbiol., 52 (2002), pp. 639-646 CrossRefView Record in ScopusGoogle Scholar [15] N. Leal, G. Havemann, T. Bobik PduP is a coenzyme-A-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enteric serovar Typhimurium LT2 Arch. Microbiol., 180 (2003), pp. 353-361 View Record in ScopusGoogle Scholar [16] Q. Luthi-Peng, S. Scharer, Z. Puhan Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri Appl. Microbiol. Biotechnol., 60 (2002), pp. 73-80 View Record in ScopusGoogle Scholar [17] M. Hartlep, W. Hussman, N. Prayitno, I. Meynial, A.P. Zeng Study of two stage process for microbial production of 1,3 propanediol from glycerol Appl. Microbiol. Biotechnol., 60 (2002), pp. 60-66 View Record in ScopusGoogle Scholar [18] H. Malaoui, R. Marczak Influence of glucose metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostatic culture Appl. Microbiol. Biotechnol., 55 (2001), pp. 226-233 View Record in ScopusGoogle Scholar [19] A. Nemeth, B. Kupesulik, B. Sevella 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026 World J. Microbiol. Biotechnol., 19 (2003), pp. 659-663 View Record in ScopusGoogle Scholar [20] E. Niv, T. Naftali, R. Hallak, N. Vaisman The efficacy of Lactobacillus reuteri ATCC 55730 in the treatment of patients with irritable bowel syndrome: a double blind, placebo-controlled, randomized study Clin. Nutr., 24 (2005), pp. 925-931 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] S. Papanikolaou, G. Aggelis Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica Lipid Technol., 21 (4) (2009), pp. 83-87 CrossRefView Record in ScopusGoogle Scholar [22] Q.L. Peng, F.B. Dileme, Z. Puhan Effect of glucose on glycerol bioconversion by Lactobacillus reuteri Appl. Microbiol. Biotechnol., 59 (2002), pp. 289-296 View Record in ScopusGoogle Scholar [23] A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, et al. The path forward for biofuels and biomaterial Science, 311 (2006), pp. 484-490 CrossRefView Record in ScopusGoogle Scholar [24] C. Raynaud, P. Sarcabal, I. Meynial-Salles, C. Croux, P. Soucaille Molecular characterization of the 1,3-propanediol operon of Clostridium butyricum Proc. Natl. Acad. Sci. U.S.A., 100 (2003), pp. 5010-5015 View Record in ScopusGoogle Scholar [25] V. Rosenfeldt, K.F. Michaelsen, M. Jakobsen, et al. Effect of probiotic Lactobacillus strains on acute diarrhea in a cohort of nonhospitalized children attending daycare centers Pediatr. Infect. Dis. J., 21 (2002), pp. 417-419 View Record in ScopusGoogle Scholar [26] S. Papanikolaou, M. Fick, G. Aggelis The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum J. Chem. Technol. Biotechnol., 79 (2004), pp. 1189-1196 View Record in ScopusGoogle Scholar [27] H. Schutz, F. Radler Anaerobic reduction of glycerol to 1,3-propanediol by Lactobacillus brevis and Lactobacillus buchneri Syst. Appl. Microbiol., 5 (1984), pp. 169-178 ArticleDownload PDFView Record in ScopusGoogle Scholar [28] C. Seifert, S. Bowien, G. Gottschalk, R. Daniel Identification and expression of the genes and purification and characterization of the genes products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii Eur. J. Biochem., 268 (2001), pp. 2369-2378 View Record in ScopusGoogle Scholar [29] A.V. Shornikova, I.A. Casas, E. Isolauri, H. Mykka¨nen, T. Vesikari Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children J. Pediatr. Gastroenterol. Nutr., 24 (1997), pp. 399-404 View Record in ScopusGoogle Scholar [30] D.D. Sriramulu, M. Liang, D. Hernandez-Romero, E. Raux-Deery, H. Lunsdorf, et al. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation J. Bacteriol., 190 (2008), pp. 4559-4567 CrossRefView Record in ScopusGoogle Scholar [31] T.L. Talarico, W.J. Dobrogosz Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri Antimicrob. Agents Chemother., 33 (1989), pp. 674-679 CrossRefView Record in ScopusGoogle Scholar [32] T.L. Talarico, I.A. Casas, T.C. Chung, W.J. Dobrogosz Production and isolation of reuterin: a growth inhibitor produced by Lactobacillus reuteri Antimicrob. Agents Chemother., 32 (1988), pp. 1854-1858 CrossRefView Record in ScopusGoogle Scholar [33] N. Valeur, P. Engel, N. Carbajal, E. Connolly, K. Ladefoged Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract Appl. Environ. Microbiol., 70 (2004), pp. 1176-1181 View Record in ScopusGoogle Scholar [34] M. Veiga da Cunha, M.A. Foster 1,3-Propanediol: NAD+ oxidoreductase of Lactobacillus brevis and Lactobacillus buchneri J. Bacteriol., 174 (1992), pp. 1013-1019 CrossRefGoogle Scholar [35] S. Vollenweider, C. Lacroix 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production Appl. Microbiol. Biotechnol., 64 (2004), pp. 16-27 View Record in ScopusGoogle Scholar [36] Z. Weizman, G. Asli, A. Alsheikh Effect of aprobiotic infant formula on infections in child care centers: comparison of two probiotic agents Pediatrics, 115 (2005), pp. 5-9 CrossRefView Record in ScopusGoogle Scholar [37] G. Yang, J. Tian, J. Li Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions Appl. Microbiol. Biotechnol., 73 (2007), pp. 1017-1024 View Record in ScopusGoogle Scholar [38] M.M. Zhu, P.D. Lawman, D.C. Cameron Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate Biotechnol. Prog., 18 (2002), pp. 694-699 View Record in ScopusGoogle Scholar [39] H. Morita, H. Toh, S. Fukuda, H. Horikawa, S. Oshima, T. Suzuki, et al. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic Island for reuterin and cobalamin production DNA Res., 15 (2008), pp. 151-161 | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.jgeb.2012.12.002 | |
dc.identifier.other | https://doi.org/10.1016/j.jgeb.2012.12.002 | |
dc.identifier.uri | https://cutt.ly/8rR9t2G | |
dc.language.iso | en_US | en_US |
dc.publisher | ELSEVIER | en_US |
dc.relation.ispartofseries | Journal of Genetic Engineering and Biotechnology;Volume 11, Issue 1, Pages 53-59 | |
dc.subject | 1,2 Propanediol (1,2 PD) | en_US |
dc.subject | Lactobacillus reuteri | en_US |
dc.subject | 1,3 Propanediol (1,3 PD) | en_US |
dc.subject | Propionic acid | en_US |
dc.subject | acidPropionaldhyde | en_US |
dc.subject | 3-Hydroxypropionaldehyde (3-HPA) | en_US |
dc.subject | University for Modern Sciences and Arts | en_US |
dc.title | 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid | en_US |
dc.type | Article | en_US |