Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorNossier A.I.
dc.contributor.authorAbdelzaher H.
dc.contributor.authorMatboli M.
dc.contributor.authorEissa S.
dc.contributor.otherBiochemistry Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherMisr University for Science and Technology (MUST)
dc.contributor.other6th October City
dc.contributor.otherGiza
dc.contributor.otherEgypt; Faculty of Biotechnology
dc.contributor.otherOctober University for Modern Sciences & Arts
dc.contributor.other6th October City
dc.contributor.otherCairo
dc.contributor.otherEgypt; Oncology Diagnostic Unit
dc.contributor.otherMedical Biochemistry & Molecular Biology Department
dc.contributor.otherFaculty of Medicine
dc.contributor.otherAin Shams University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Faculty of Medicine Ain Shams Research Institute (MASRI)
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:56Z
dc.date.available2020-01-09T20:40:56Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractThe authors describe a method for the colorimetric determination of unamplified microRNA. It is based on the use of citrate-capped gold nanoparticles (AuNPs) and, alternatively, a microRNA-probe hybrid or a magnetically extracted microRNA that serve as stabilizers against the salt-induced aggregation of AuNPs. The absorbance ratios A525/A625 of the reacted AuNP solutions were used to quantify the amount of microRNA. The assay works in the range of 5�25�pmol microRNA. The lower limit of detection (LOD) is 10�pmol. The performance of the method was tested by detection of microRNA-210-3p in totally extracted urinary microRNA from normal, benign, and bladder cancer subjects. The sensitivity and specificity for qualitative detection of urinary microRNA-210-3p using the assay are 74% and 88% respectively, which is consistent with real time PCR based assays. The assay was applied to the determination of specific microRNA by using its specific oligo targeter or following magnetic isolation of the desired microRNA. The method is simple, cost-efficient, has a short turn-around time and requires minimal equipment and personnel. � 2018, Springer-Verlag GmbH Austria, part of Springer Nature.en_US
dc.identifier.doihttps://doi.org/10.1007/s00604-018-2767-9
dc.identifier.doiPubMedID29594755
dc.identifier.issn263672
dc.identifier.otherhttps://doi.org/10.1007/s00604-018-2767-9
dc.identifier.otherPubMedID29594755
dc.identifier.urihttps://t.ly/rxxeW
dc.language.isoEnglishen_US
dc.publisherSpringer-Verlag Wienen_US
dc.relation.ispartofseriesMicrochimica Acta
dc.relation.ispartofseries185
dc.subjectAuNPsen_US
dc.subjectBladder canceren_US
dc.subjectMagnetic nanoparticlesen_US
dc.subjectMicroRNA detectionen_US
dc.subjectMicroRNA-210-3pen_US
dc.subjectOligonucleotide adsorptionen_US
dc.subjectOligotargeteren_US
dc.subjectSalt-induced aggregationen_US
dc.subjectStreptavidinen_US
dc.subjectcitric aciden_US
dc.subjectgolden_US
dc.subjectmetal nanoparticleen_US
dc.subjectmicroRNAen_US
dc.subjectMIRN210 microRNA, humanen_US
dc.subjectchemistryen_US
dc.subjectcolorimetryen_US
dc.subjectcost benefit analysisen_US
dc.subjecteconomicsen_US
dc.subjecthumanen_US
dc.subjectisolation and purificationen_US
dc.subjectproceduresen_US
dc.subjecturineen_US
dc.subjectCitric Aciden_US
dc.subjectColorimetryen_US
dc.subjectCost-Benefit Analysisen_US
dc.subjectGolden_US
dc.subjectHumansen_US
dc.subjectMetal Nanoparticlesen_US
dc.subjectMicroRNAsen_US
dc.titleDual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticlesen_US
dc.typeArticleen_US
dcterms.isReferencedByAmbros, V., The functions of animal microRNAs (2004) Nature, 431, pp. 350-355. , COI: 1:CAS:528:DC%2BD2cXnsFaiu7g%3D; Krol, J., Sobczak, K., Wilczynska, U., Drath, M., Jasinska, A., Kaczynska, D., Krzyzosiak, W.J., Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design (2004) J Biol Chem, 279, pp. 42230-42239. , COI: 1:CAS:528:DC%2BD2cXnvFWnur0%3D; Iorio, M.V., Croce, C.M., MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review (2017) EMBO Mol Med, 9, p. 582; Ben-Dov, I.Z., Tan, Y.C., Morozov, P., Wilson, P.D., Rennert, H., Blumenfeld, J.D., Tuschl, T., Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline (2014) PLoS One, 9; Verjans, R., Van Bilsen, M., Schroen, B., MiRNA Deregulation in Cardiac Aging and Associated Disorders (2017) Int Rev Cell Mol Biol, 334, pp. 207-263; Cheng, G., Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy (2015) Adv Drug Deliv Rev, 81, pp. 75-93. , COI: 1:CAS:528:DC%2BC2cXhsFCnsr%2FM; Bertoli, G., Cava, C., Castiglioni, I., MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer (2015) Theranostics, 5, pp. 1122-1143. , COI: 1:CAS:528:DC%2BC2MXhs1CmtLbP; Wang, J., Chen, J., Sen, S., MicroRNA as Biomarkers and Diagnostics (2016) J Cell Physiol, 231, pp. 25-30. , COI: 1:CAS:528:DC%2BC2MXhsFKntbfJ; Leshkowitz, D., Horn-Saban, S., Parmet, Y., Feldmesser, E., Differences in microRNA detection levels are technology and sequence dependent (2013) RNA, 19, pp. 527-538. , COI: 1:CAS:528:DC%2BC3sXltVyqurs%3D; Tian, T., Wang, J., Zhou, X., A review: microRNA detection methods (2015) Org Biomol Chem, 13, pp. 2226-2238. , COI: 1:CAS:528:DC%2BC2cXitFOrsbnL; Hwang, D.W., Song, I.C., Lee, D.S., Kim, S., Smart magnetic fluorescent nanoparticle imaging probes to monitor micro RNAs (2010) Small, 6, pp. 81-88. , COI: 1:CAS:528:DC%2BC3cXhtFymsw%3D%3D; Li, C., Li, Z., Jia, H., Yan, J., One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP) (2011) Chem Commun, 47, pp. 2595-2597. , COI: 1:CAS:528:DC%2BC3MXitVCms7w%3D; Li, F., Peng, J., Wang, J., Tang, H., Tan, L., Xie, Q., Yao, S., Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24 (2014) Biosens Bioelectron, 54, pp. 158-164. , COI: 1:CAS:528:DC%2BC2cXhtFKqsLo%3D; Zhu, X., Zhou, X., Xing, D., Label-free detection of micro-RNA: two-step signal enhancement with a hairpin-probebased graphene fluorescence switch and isothermal amplification (2013) Chemistry, 19, pp. 5487-5494. , COI: 1:CAS:528:DC%2BC3sXjtlarsLs%3D; Mieszawska, A.J., Mulder, W.J.M., Fayad, Z.A., Cormode, D.P., Multifunctional gold nanoparticles for diagnosis and therapy of disease (2013) Mol Pharm, 10, pp. 831-847. , COI: 1:CAS:528:DC%2BC3sXhsFGqsro%3D; Rechberger, W., Hohenau, A., Leitner, A., Krenn, J.R., Lamprecht, B., Aussenegg, F.R., Optical properties of two interacting gold nanoparticles (2003) Opt Commun, 220, pp. 137-141. , COI: 1:CAS:528:DC%2BD3sXjt1ektr4%3D; Huang, K.S., Lin, Y.C., Su, K.C., Chen, H.Y., An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation (2007) Biomed Microdevices, 9, pp. 761-768; Liandris, E., Gazouli, M., Andreadou, M., Comor, M., Abazovic, N., Sechi, L.A., Ikonomopoulos, J., Direct detection of unamplified DNA from pathogenic mycobacteria using DNA-derivatized gold nanoparticles (2009) J Microbiol Methods, 78, pp. 260-264. , COI: 1:CAS:528:DC%2BD1MXhtVensLfJ; Nossier, A.I., Mohammed, O.S., Fakhr El-Deen, R.R., Zaghloul, A.S., Eissa, S., Gelatin-modified Gold Nanoparticles for Direct Detection of Urinary total Gelatinase activity: Diagnostic value in Bladder Cancer (2016) Talanta, 161, pp. 511-519. , COI: 1:CAS:528:DC%2BC28XhsFWis7nK; Bonomi, R., Cazzolaro, A., Sansone, A., Scrimin, P., Prins, L.J., Detection of enzyme activity through catalytic signal amplification with functionalized gold nanoparticles (2011) Angew Chem Int Ed Eng, 50, pp. 2307-2312. , COI: 1:CAS:528:DC%2BC3MXisVKltrY%3D; He, S., Liu, D.B., Wang, Z., Cai, K.Y., Jiang, X.Y., Utilization of unmodified gold nanoparticles in colorimetric detection (2011) Sci China Phys Mech Astron, 54, pp. 1757-1765; Li, H., Rothberg, L.J., Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles (2004) Proc Natl Acad Sci U S A, 101, pp. 14036-14039. , COI: 1:CAS:528:DC%2BD2cXosVylsrY%3D; Li, H., Rothberg, L.J., Detection of Specific Sequences in RNA Using Differential Adsorption of Single-Stranded Oligonucleotides on Gold Nanoparticles (2005) Anal Chem, 77, pp. 6229-6233. , COI: 1:CAS:528:DC%2BD2MXovFWhtrw%3D; Farkhari, N., Abbasian, S., Moshaii, A., Nikkhah, M., Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: Investigating some important parameters in bio-sensing applications (2016) Colloids Surf B: Biointerfaces, 148, pp. 657-664. , COI: 1:CAS:528:DC%2BC28Xhs1Slt7nN; Hill, H.D., Mirkin, C.A., The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange (2006) Nat Protoc, 1, pp. 324-336. , COI: 1:CAS:528:DC%2BD28XhtFOitbjI; Eissa, S., Matboli, M., Hegazy, M.G., Kotb, Y.M., Essawy, N.O., Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis (2015) Transl Res, 165, pp. 731-739. , COI: 1:CAS:528:DC%2BC2MXhsVaksbs%3D; Lorenzen, J.M., Volkmann, I., Fiedler, J., Schmidt, M., Scheffner, I., Haller, H., Gwinner, W., Thum, T., Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients (2011) Am J Transplant, 11, pp. 2221-2227. , COI: 1:CAS:528:DC%2BC3MXhsVCntr3O; Kilil, G.K., Tilton, L., Karbiwnyk, C.M., NaOH concentration and streptavidin bead type are key factors for optimal DNA aptamer strand separation and isolation (2016) BioTechniques, 61, pp. 114-116; Liu, X., Wang, Y., Chen, P., Wang, Y., Zhang, J., Aili, D., Liedberg, B., Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin a light chain (2014) Anal Chem, 86, pp. 2345-2352. , COI: 1:CAS:528:DC%2BC2cXhs1WntbY%3D; Li, Z.J., Zheng, X.J., Zhang, L., Liang, R.P., Li, Z.M., Qiu, J.D., Label-free colorimetric detection of biothiols utilizing SAM and un-modified Au nanoparticles (2015) Biosens Bioelectron, 68, pp. 668-674. , COI: 1:CAS:528:DC%2BC2MXhsleqsL4%3D; Nelson, E.M., Rothberg, L.J., Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution (2011) Langmuir, 27, pp. 1770-1777. , COI: 1:CAS:528:DC%2BC3MXjvFGksA%3D%3D; Li, Y., Pu, Q., Li, J., Zhou, L., Tao, Y., Li, Y., Xie, G., An �off-on� fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification (2017) Microchim Acta, 184, pp. 4323-4330. , COI: 1:CAS:528:DC%2BC2sXhtl2hsrzJ; Zhou, Y., Li, B., Wang, M., Wang, J., Yin, H., Ai, S., Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification (2017) Microchim Acta, 184, pp. 4359-4365. , COI: 1:CAS:528:DC%2BC2sXhsVWgsr3P; Shi, H.Y., Yang, L., Zhou, X.Y., Bai, J., Gao, J., Jia, H.X., Li, Q.G., A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA (2017) Microchim Acta, 184, pp. 525-531. , COI: 1:CAS:528:DC%2BC28XitVylsbrI; Sang, Y., Xu, Y., Xu, L., Cheng, W., Li, X., Wu, J., Ding, S., Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease (2017) Microchim Acta, 184 (7), pp. 2465-2471. , COI: 1:CAS:528:DC%2BC2sXmtFOhu70%3D; Zeng, K., Li, H., Peng, Y., Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine (2017) Microchim Acta, , https://doi.org/10.1007/s00604-017-2276-2; Borghei, Y.S., Hosseini, M., Ganjali, M.R., Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters (2017) Microchim Acta, 184, pp. 2671-2677. , COI: 1:CAS:528:DC%2BC2sXmvFGjsbo%3D; Ji, X., Lv, H., Ma, M., Lv, B., Ding, C., An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates (2017) Microchim Acta, 184 (8), pp. 2505-2513. , COI: 1:CAS:528:DC%2BC2sXmtFOgsr0%3D; Paul, A., Avci-Adali, M., Ziemer, G., Wendel, H.P., Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX (2009) Oligonucleotides, 19, pp. 243-254. , COI: 1:CAS:528:DC%2BD1MXhtFCjtb3K; Svobodov�, M., Pinto, A., Nadal, P., O�Sullivan, C.K., Comparison of different methods for generation of single-stranded DNA for SELEX processes (2012) Anal Bioanal Chem, 404, pp. 835-842; Liang, C., Li, D., Zhang, G., Li, H., Shao, N., Liang, Z., Zhang, L., Zhang, G., Comparison of the methods for generating single-stranded DNA in SELEX (2015) Analyst, 140, pp. 3439-3444. , COI: 1:CAS:528:DC%2BC2MXkvVWjtro%3D
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: