Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorEl Leithy E.S.
dc.contributor.authorAbdel-Bar H.M.
dc.contributor.authorAli R.A.-M.
dc.contributor.otherDepartment of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics and Industrial Pharmacy
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherHelwan University
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Pharmaceutics
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherUniversity of Sadat City
dc.contributor.otherMenoufia
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:31Z
dc.date.available2020-01-09T20:40:31Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractThe aim of this study was to prove a prolonged control of glucose levels, in rats, by the oral use of insulin folate-chitosan nanoparticles (FA-CS NPs). It was possible to prepare positively charged NPs with an average particle size of 288 � 5.11 nm and >80% entrapment efficiency. The system was able to enhance the stability of insulin in presence of GIT enzymes, with less than 10% release at pH 1.2 and an 8 hr released amount of 38.92 � 4.52% in PBS pH 7.4. A 5 fold enhancement in insulin intestinal permeability and cellular uptake over insulin solution was proven. The cellular uptake pathways was found to occur by several mechanisms. Besides, cell compatibility and absence of histopathological alterations was also demonstrated. Finally, a controlled blood glucose level for 8 h in rats. These results anticipated FA-CS NPs as a promising oral insulin candidate. � 2019 Elsevier B.V.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=22454&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.ijpharm.2019.118708
dc.identifier.doiPubMed ID 31593805
dc.identifier.issn3785173
dc.identifier.otherhttps://doi.org/10.1016/j.ijpharm.2019.118708
dc.identifier.otherPubMed ID 31593805
dc.identifier.urihttps://t.ly/YZR0Y
dc.language.isoEnglishen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofseriesInternational Journal of Pharmaceutics
dc.relation.ispartofseries571
dc.subjectCellular uptakeen_US
dc.subjectChitosanen_US
dc.subjectControlled blood glucoseen_US
dc.subjectFolic aciden_US
dc.subjectInsulinen_US
dc.subjectOral deliveryen_US
dc.subjectantidiabetic agenten_US
dc.subjectchitosan nanoparticleen_US
dc.subjectfolate chitosan nanoparticleen_US
dc.subjectfolic aciden_US
dc.subjectglucoseen_US
dc.subjectinsulinen_US
dc.subjectunclassified drugen_US
dc.subjectanimal experimenten_US
dc.subjectanimal modelen_US
dc.subjectantidiabetic activityen_US
dc.subjectArticleen_US
dc.subjectCaco-2 cell lineen_US
dc.subjectcell viabilityen_US
dc.subjectcontrolled studyen_US
dc.subjectcytotoxicityen_US
dc.subjectenzymatic degradationen_US
dc.subjectglucose blood levelen_US
dc.subjecthistopathologyen_US
dc.subjecthumanen_US
dc.subjecthuman cellen_US
dc.subjectin vivo studyen_US
dc.subjectinsulin blood levelen_US
dc.subjectinsulin releaseen_US
dc.subjectinternalizationen_US
dc.subjectintestine mucosa permeabilityen_US
dc.subjectmaleen_US
dc.subjectmean residence timeen_US
dc.subjectnonhumanen_US
dc.subjectparticle sizeen_US
dc.subjectpHen_US
dc.subjectpriority journalen_US
dc.subjectraten_US
dc.subjectzeta potentialen_US
dc.titleFolate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activityen_US
dc.typeArticleen_US
dcterms.isReferencedByAbdel-Bar, H.M., El Basset, S.R.A., Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells (2017) Biomed. Pharmacother., 93, pp. 561-569; Agrawal, A.K., Harde, H., Thanki, K., Jain, S., Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration (2014) Biomacromolecules, 15, pp. 350-360; Agrawal, A.K., Urimi, D., Harde, H., Kushwah, V., Jain, S., Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration (2015) Royal Soc. Chem. Adv., 5, pp. 105179-105193; Ahmed, T.A., Aljaeid, B.M., Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery (2016) Drug Des., Dev. Therapy, 10, pp. 483-507; Aiedeh, K., Tahab, M.O., Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems (1999) Arch. Pharm., 332, pp. 103-107; Benavent, A.F.R., Perera, N.Y., Alonso, D.F., Perea, S.E., Gomez, D.E., Farina, H.G., Mechanisms of cellular uptake, intracellular transportation, and degradation of CIGB-300, a Tat-conjugated peptide, in tumor cell lines (2014) Mol. Pharm., 11, pp. 1798-1807; Calvo, P., Remu�an-Lopez, C., Vila-Jato, J.L., Alonso, M.J., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers (1997) J. Appl. Polym. Sci., 63, pp. 125-132; Chelakkot, C., Ghim, J., Ryu, S.H., Mechanisms regulating intestinal barrier integrity and its pathological implications (2018) ExpMol Med., 50, p. 103; Czuba, E., Diop, M., Mura, C., Schaschkow, A., Langlois, A., Bietiger, W., Neidl, R., Sigrist, S., Oral insulin delivery, the challenge to increase insulin bioavailability: influence of surface charge in nanoparticle system (2018) Int. J. Pharm., 542, pp. 47-55; Di Marzio, L., Marianecci, C., Cinque, B., Nazzarri, M., Cimini, A.M., Cristiano, L., Cifone, M.G., Carafa, M., pH-sensitive non-phospholipid vesicle and macrophage-like cells: binding, uptake and endocytotic pathway (2008) Biochim. Biophys. Acta, 1778, pp. 2749-2756; Dong, S., Cho, H.J., Lee, Y.W., Roman, M., Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting (2014) Biomacromolecules, 15, pp. 1560-1567; Dyawanapelly, S., Koli, U., Dharamdasani, V., Jain, R., Dandekar, P., Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins (2016) Drug Deliv. Trans. Res., 6, pp. 365-379; El-Leithy, E.S., Abdel-Bar, H.M., Abd el-Moneum, R., Synthesis, optimization and characterization of folate-chitosan polymer conjugate for possible oral delivery of macromolecular drugs (2017) IOSR J. Pharm., 7, pp. 30-38; Elmowafy, E., Osman, R., El-Shamy, A.H., Awad, G.A., Nanocomplexes of an insulinotropic drug: optimization, microparticle formation, and antidiabetic activity in rats (2014) Int. J. Nanomed., 9, pp. 4449-4465; Fan, W., Xia, D., Zhu, Q., Li, X., He, S., Zhu, C., Guo, S., Gan, Y., Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery (2018) Biomaterials, 151, pp. 13-23; Gedawy, A., Martinez, J., Al-Salami, H., Dass, C.R., Oral insulin delivery: existing barriers and current counter-strategies (2018) J. Pharm. Pharmacol., 70, pp. 197-213; Grant, J., Lee, H., Liu, R.C., Allen, C., Intermolecular interactions and morphology of aqueous polymer/surfactant mixtures containing cationic chitosan and nonionic sorbitan esters (2008) Biomacromolecules, 9, pp. 2146-2152; Guo, F., Zhang, M., Gao, Y., Zhu, S., Chen, S., Liu, W., Zhong, H., Liu, J., Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation (2016) Drug Deliv., 23, pp. 2003-2014; Ho, G., Broze, G.J., Jr., Schwartz, A.L., Role of heparan sulfate proteoglycans in the uptake and degradation of tissue factor pathway inhibitor-coagulation factor Xa complexes (1997) J. Biol. Chem., 272, pp. 16838-16844; Hsu, L.W., Lee, P.L., Chen, C.T., Mi, F.L., Juang, J.H., Hwang, S.M., Ho, Y.C., Sung, H.W., Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan (2012) Biomaterials, 33, pp. 6254-6263; Huang, Y., Leobandung, W., Foss, A., Peppas, N.A., Molecular aspects of muco and bioadhesion: tethered structures and site-specific structures (2000) J. Control. Release, 65, pp. 63-71; Illum, L., Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems (2007) J. Pharm. Sci., 96, pp. 473-483; Jain, S., Rathi, V.V., Jain, A.K., Das, M., Godugu, C., Folate-decorated PLGA nanoparticles asa rationally designed vehicle for the oral delivery of insulin (2012) Nanomedicine, 7, pp. 1311-1337; Joshi, G., Kumar, A., Sawant, K., Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles (2016) Drug Deliv., 23, pp. 3492-3504; Kriwet, B., Kissel, T., Interactions between bioadhesive poly(acrylic acid) and calcium Ions (1996) Int. J. Pharm., 127, pp. 135-145; Li, P., Wang, Y., Zeng, F., Chen, L., Peng, Z., Kong, L.X., Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells (2011) Carbohydr. Res., 346, pp. 801-806; Liu, M., Zhang, J., Zhu, X., Shan, W., Li, L., Zhong, J., Zhang, Z., Huang, Y., Efficient mucus permeation and tight junction opening by dissociable �mucus-inert� agent coated trimethyl chitosan nanoparticles for oral insulin delivery (2016) J. Control Release, 222, pp. 67-77; Liu, M., Zhong, X., Yanga, Z., Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A (2017) Sci. Rep., 7, p. 41322; Luippold, G., Bedenik, J., Voigt, A., Grempler, R., Short and long term glycemic control of streptozotocin-induced diabetic rats using different insulin preparations (2016) PLoS ONE, 11; Mellman, I., Nelson, W.J., Coordinated protein sorting, targeting and distribution in polarized cells (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 833-845; Mukherjee, S., Ray, S., Thakur, R.S., Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy (2009) Pakistan J. Pharm. Sci., 22, pp. 131-138; Ooya, T., Eguchi, M., Ozaki, A., Yui, N., Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition (2002) Int. J. Pharm., 242, pp. 47-54; Parmar, H.S., Kar, A., Protective role of Mangiferaindica, Cucumismelo and Citrullus vulgaris peel extracts in chemically induced hypothyroidism (2009) Chem. Biol. Interact., 177, pp. 254-258; Rahbarian, M., Mortazavian, E., Dorkoosh, F.A., Tehrani, M.R., Preparation, evaluation and optimization of nanoparticles composed of thiolatedtriethyl chitosan: a potential approach for buccal delivery of insulin (2018) J. Drug Delivery Sci. Technol., 44, pp. 254-263; Rathnam, G., Balasubramani, P., Saravanakumar, A., Nasal drug delivery of antidiabetic drug repaglinide using degradable starch microspheres (2011) Int. J. Pharm. Sci. Res., 2, pp. 940-947; Ravikumara, N.R., Madhusudhan, B., Chitosan nanoparticles for tamoxifen delivery and cytotoxicity to MCF-7 and Vero cells (2011) Pure Appl. Chem., 83, pp. 2027-2040; Rekha, M.R., Sharma, C.P., Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption (2009) J. Control. Release, 135, pp. 144-151; Roger, E., Kalscheuer, S., Kirtane, A., Guru, B.R., Grill, A.E., Whittum-Hudson, J., Panyam, J., Folic acid functionalized nanoparticles for enhanced oral drug delivery (2012) Mol. Pharm., 9, pp. 2103-2110; Roger, E., Lagarce, F., Garcion, E., Benoit, J.P., Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis (2009) J. Control. Release, 140, pp. 174-181; Salatin, S., Khosroushahi, Y.A., Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles (2017) J. Cell Mol. Med., 21, pp. 1668-1686; Sarmento, B., Martins, S., Ferreira, D., Souto, E.B., Oral insulin delivery by means of solid lipid nanoparticles (2007) Int. J. Nanomed., 2, pp. 743-749; Sarmento, B., Ribeiro, A., Veiga, F., Ferreira, D., Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems (2006) Biomed. Chromatogr., 20, pp. 898-903; Spaendonk, H.V., Ceuleers, H., Witters, L., Patteet, E., Joossens, J., Augustyns, K., Regulation of intestinal permeability: the role of proteases (2017) World J. Gastroenterol., 23, pp. 2106-2123; Stella, B., Arpicco, S., Peracchia, M.T., Desma�le, D., Hoebeke, J., Renoir, M., D'Angelo, J., Couvreur, P., Design of folic acid-conjugated nanoparticles for drug targeting (2000) J. Pharm. Sci., 89, pp. 1452-1464; Su, F.Y., Lin, K.J., Sonaje, K., Wey, S.P., Yen, T.C., Ho, Y.C., Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery (2012) Biomaterials, 33, pp. 2801-2811; Tian, H., He, Z., Sun, C., Yang, C., Zhao, P., Liu, L., Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin (2018) Adv. Healthc. Mater., 7; Wang, L., Zhang, J., Song, M., Tian, B., Li, K., Liang, Y., Han, J., Wu, Z., A shell crosslinked polymeric micelle system for pH/redox dual stimuli-triggered DOX on-demand release and enhanced antitumor activity (2017) Colloids Surf. B, Biointerf., 152, pp. 1-11; Wong, C.Y., Al-Salami, H., Dass, C.R., Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment (2017) J. Control. Release, 264, pp. 247-275; Yin, L., Ding, J., Fei, L., He, M., Cui, F., Tang, C., Yin, C., Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles (2008) Int. J. Pharm., 350, pp. 220-229; Yu, J., Zhang, Y., Bomba, H., Gu, Z., Stimuli-responsive delivery of therapeutics for diabetes treatment (2016) Bioeng. Transl. Med., 1, pp. 323-337; Zhang, H., Yamazaki, T., Zhi, C., Hanagata, N., Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpGoligodeoxynucleotides (2012) Nanoscale, 4, pp. 6343-6350; Zhang, J., Zhu, X., Jin, Y., Shan, W., Huang, Y., Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles (2014) Mol. Pharm., 11, pp. 1520-1532; Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., Zhao, Y., Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials (2011) Small, 7, pp. 1322-1337; Zhao, K., Shi, X., Zhao, Y., Wei, H., Sun, Q., Huang, T., Zhang, X., Wang, Y., Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles (2011) Vaccine, 29, pp. 5849-8556
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: