The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorArafa A.A.M.
dc.contributor.authorRida S.Z.
dc.contributor.authorKhalil M.
dc.contributor.otherDepartment of Mathematics
dc.contributor.otherFaculty of Science
dc.contributor.otherSouth Valley University
dc.contributor.otherQena
dc.contributor.otherEgypt; Department of Mathematics
dc.contributor.otherFaculty of Engineering
dc.contributor.otherModern Science and Arts University (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:42:27Z
dc.date.available2020-01-09T20:42:27Z
dc.date.issued2013
dc.descriptionScopus
dc.description.abstractIn this paper, generalized Euler method (GEM) and homotopy analysis method (HAM) are performed to solve the problem of the population dynamics of the human immunodeficiency type 1 virus (HIV-1). We introduce fractional orders to the model of HIV-1 whose components are plasma densities of uninfected CD4+ T-cells, the infected such cells and the free virus. The effect of the drug treatment of HIV-1 will be discussed in this paper. � 2012 Elsevier Inc.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=28065&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.apm.2012.05.002
dc.identifier.doiPubMed ID :
dc.identifier.issn0307904X
dc.identifier.otherhttps://doi.org/10.1016/j.apm.2012.05.002
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://cutt.ly/VrRnDMI
dc.language.isoEnglishen_US
dc.relation.ispartofseriesApplied Mathematical Modelling
dc.relation.ispartofseries37
dc.subjectCaputo fractional derivativeen_US
dc.subjectGeneralized Euler methoden_US
dc.subjectHIV modelen_US
dc.subjectHomotopy analysis methoden_US
dc.subjectNumerical solutionen_US
dc.subjectCaputo fractional derivativesen_US
dc.subjectEuler methoden_US
dc.subjectHIV modelsen_US
dc.subjectHomotopy analysis methodsen_US
dc.subjectNumerical solutionen_US
dc.subjectDifferentiation (calculus)en_US
dc.subjectDrug therapyen_US
dc.subjectPlasma densityen_US
dc.subjectVirusesen_US
dc.subjectDiseasesen_US
dc.titleThe effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order modelen_US
dc.typeArticleen_US
dcterms.isReferencedByJordan, D.W., Smith, P., (1999), Nonlinear Ordinary Differential Equations, third ed., Oxford University Press; Tuckwell, H.C., Wan, F.Y.M., Nature of equilibria and effects of drug treatments in some simple viral population dynamical models (2000) IMA J. Math. Appl. Med. Biol., 17, pp. 311-327; Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A., Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 7247-7251; Wang, L., Li, M.Y., Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T-cells (2006) Math. Biosci., 200, pp. 44-57; Nowak, M., Bonhoeffer, S., Shaw, G., May, R., Anti-viral drug treatment, dynamics of resistance in free virus and infected cell populations (1997) J. Theor. Biol., 184, pp. 203-217; Nowak, M., Lloyd, A., Vasquez, G., Wiltrout, T., Wahl, L., Bischofberger, N., Williams, J., Hirsch, V., Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection (1997) J. Virol., 71, pp. 7518-7525; Tuckwell, H.C., Wan, F.Y.M., On the behavior of solutions in viral dynamical models (2004) Bio Systems, 73, pp. 157-161; Merdan, M., G�kdo?an, A., Yildirim, A.T., On the numerical solution of the model for HIV infection of CD4+T-cells (2011) Comput. Math. Appl., 62, pp. 118-123; Bonhoeffer, S., Coffin, J.M., Nowak, M.A., Human immunodeficiency virus drug therapy and virus load (1997) J. Virol., 71, pp. 3275-3278; Tuckwell, H.C., Wan, F.Y.M., On the behavior of solutions in viral dynamical models (2004) Bio Systems, 73, pp. 157-161; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the solutions of time-fractional bacterial chemotaxis in a diffusion gradient chamber (2009) Int. J. Nonlinear Sci., 7, pp. 485-492; Hashim, I., Abdulaziz, O., Momani, S., Homotopy analysis method for fractional IVPs (2009) Commun. Nonlinear Sci. Numer. Simul., 14, pp. 674-684; Odibat, Z., Momani, S., Xu, H., A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations (2010) Appl. Math. Model., 34, pp. 593-600; Ert�rk, V.S., Odibat, Z.M., Momani, S., An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells (2011) Comput. Math. Appl., 62, pp. 966-1002; Ding, Y., Yea, H., A fractional-order differential equation model of HIV infection of CD4+T-cells (2009) Math. Comput. Model., 50, pp. 386-392; Song, X., Neumann, A.U., Global stability and periodic solution of the viral dynamics (2007) J. Math. Anal. Appl., 329, pp. 281-297; Odibat, Z., Shawagfeh, N., Generalized Taylor's formula (2007) Appl. Math. Comput., 186, pp. 286-293; Zurigat, M., Momani, S., Alawneh, A., Analytical approximate solutions of systems of fractional algebraic differential equations by homotopy analysis method (2010) Comput. Math. Appl., 59, pp. 1227-1235; Zurigat, M., Momani, S., Odibat, Z., Alawneh, A., The homotopy analysis method for handling systems of fractional differential equations (2010) Appl. Math. Model., 34, pp. 24-35; Odibat, Z., Moamni, S., An algorithm for the numerical solution of differential equations of fractional order (2008) J. Appl. Math. Informat., 26, pp. 15-27; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractional order model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells (2011) Adv. Stud. Biol., 3, pp. 347-353; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection (2012) Nonlinear Biomed. Phys., 6, p. 1; Liao, S.J., Notes on the homotopy analysis method: some definitions and theorems (2009) Commun. Nonlinear Sci. Numer. Simulat., 14, pp. 983-997; Liao, S.J., (1992) The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, , Ph.D. Thesis, Shanghai Jiao Tong University; Merdan, M., Yev, T.K., Homotopy perturbation method for solving viral dynamical model (2010) C.�. Fen-Edebiyat Fak�ltesi, Fen Bilimleri Dergisi, 31, pp. 65-77; Wang, Z., Liu, X., A chronic viral infection model with immune impairment (2007) J. Theoret. Biol., 249, pp. 532-542
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S0307904X12002831-main.pdf
Size:
304.81 KB
Format:
Adobe Portable Document Format
Description: