I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery

Show simple item record

dc.contributor.author Sakr T.M.
dc.contributor.author Khowessah O.M.
dc.contributor.author Motaleb M.A.
dc.contributor.author Abd El-Bary A.
dc.contributor.author El-Kolaly M.T.
dc.contributor.author Swidan M.M.
dc.contributor.other Radioactive Isotopes and Generator Department
dc.contributor.other Hot Labs Center
dc.contributor.other Egyptian Atomic Energy Authority
dc.contributor.other PO13759
dc.contributor.other Cairo
dc.contributor.other Egypt; Pharmaceutical Chemistry Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Modern Sciences and Arts University
dc.contributor.other 6th October City
dc.contributor.other Egypt; Pharmaceutics and Industrial Pharmacy Department
dc.contributor.other Faculty of Pharmacy
dc.contributor.other Cairo University
dc.contributor.other PO11562
dc.contributor.other Cairo
dc.contributor.other Egypt; Labeled Compounds Department
dc.contributor.other Hot Labs Center
dc.contributor.other Egyptian Atomic Energy Authority
dc.contributor.other PO13759
dc.contributor.other Cairo
dc.contributor.other Egypt
dc.date.accessioned 2020-01-09T20:40:51Z
dc.date.available 2020-01-09T20:40:51Z
dc.date.issued 2018
dc.identifier.issn 9280987
dc.identifier.other https://doi.org/10.1016/j.ejps.2018.06.029
dc.identifier.other PubMed ID 29981892
dc.identifier.uri https://t.ly/j67nm
dc.description Scopus
dc.description MSA Google Scholar
dc.description.abstract Nanotechnology may be applied in medicine where the utilization of nanoparticles (?100 nm) for the delivery and targeting of theranostic agents is at the forefront of projects in cancer nano-science. This study points a novel one step synthesis approach to build up polyethylene glycol capped silver nanoparticles doped with I-131 radionuclide (131I-doped Ag-PEG NPs). The formula was prepared with average hydrodynamic size 21 nm, zeta potential � 25 mV, radiolabeling yield 98 � 0.76%, and showed good in-vitro stability in saline and mice serum. The in-vitro cytotoxicity study of cold Ag-PEG NPs formula as a drug carrier vehicle showed no cytotoxic effect on normal cells (WI-38 cells) at a concentration below 3 ?L/104 cells. The in-vivo biodistribution pattern of 131I-doped Ag-PEG NPs in solid tumor bearing mice showed high radioactivity accumulation in tumor tissues with maximum uptake of 35.43 � 1.12 and 63.8 � 1.3% ID/g at 60 and 15 min post intravenous (I.V.) and intratumoral injection (I.T.), respectively. Great potential of T/NT ratios were obtained throughout the experimental time points with maximum ratios 45.23 � 0.65 and 92.46 � 1.02 at 60 and 15 min post I.V. and I.T. injection, respectively. Thus, 131I-doped Ag-PEG NPs formulation could be displayed as a great potential tumor nano-sized theranostic probe. � 2018 Elsevier B.V. en_US
dc.description.uri https://www.scimagojr.com/journalsearch.php?q=21331&tip=sid&clean=0
dc.language.iso English en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartofseries European Journal of Pharmaceutical Sciences
dc.relation.ispartofseries 122
dc.subject October University for Modern Sciences and Arts
dc.subject University for Modern Sciences and Arts
dc.subject MSA University
dc.subject جامعة أكتوبر للعلوم الحديثة والآداب
dc.subject And nano-sized radiopharmaceutical en_US
dc.subject Chelator free radiolabeling en_US
dc.subject Radiochemical doping en_US
dc.subject Silver nanoparticles en_US
dc.subject Theranostics en_US
dc.subject Tumor delivery en_US
dc.subject iodine 131 en_US
dc.subject macrogol en_US
dc.subject silver nanoparticle en_US
dc.subject Iodine-131 en_US
dc.subject metal nanoparticle en_US
dc.subject radioactive iodine en_US
dc.subject silver en_US
dc.subject animal cell en_US
dc.subject animal experiment en_US
dc.subject animal model en_US
dc.subject animal tissue en_US
dc.subject Article en_US
dc.subject cancer chemotherapy en_US
dc.subject cell viability en_US
dc.subject controlled study en_US
dc.subject cytotoxicity en_US
dc.subject doping en_US
dc.subject drug delivery system en_US
dc.subject Fourier transform infrared spectroscopy en_US
dc.subject human en_US
dc.subject human cell en_US
dc.subject in vitro study en_US
dc.subject in vivo study en_US
dc.subject isotope labeling en_US
dc.subject macrophage en_US
dc.subject male en_US
dc.subject mouse en_US
dc.subject nanoencapsulation en_US
dc.subject nanotechnology en_US
dc.subject nonhuman en_US
dc.subject photon correlation spectroscopy en_US
dc.subject priority journal en_US
dc.subject single drug dose en_US
dc.subject solid malignant neoplasm en_US
dc.subject surface plasmon resonance en_US
dc.subject theranostic nanomedicine en_US
dc.subject transmission electron microscopy en_US
dc.subject ultraviolet visible spectroscopy en_US
dc.subject WI-38 cell line en_US
dc.subject zeta potential en_US
dc.subject animal en_US
dc.subject cell line en_US
dc.subject cell survival en_US
dc.subject chemistry en_US
dc.subject drug effect en_US
dc.subject drug release en_US
dc.subject drug stability en_US
dc.subject metabolism en_US
dc.subject sarcoma en_US
dc.subject theranostic nanomedicine en_US
dc.subject tissue distribution en_US
dc.subject Animals en_US
dc.subject Cell Line en_US
dc.subject Cell Survival en_US
dc.subject Drug Delivery Systems en_US
dc.subject Drug Liberation en_US
dc.subject Drug Stability en_US
dc.subject Humans en_US
dc.subject Iodine Radioisotopes en_US
dc.subject Male en_US
dc.subject Metal Nanoparticles en_US
dc.subject Mice en_US
dc.subject Sarcoma en_US
dc.subject Silver en_US
dc.subject Theranostic Nanomedicine en_US
dc.subject Tissue Distribution en_US
dc.title I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery en_US
dc.type Article en_US
dcterms.isReferencedBy Abouhussein, D.M.N., Khattab, A., Bayoumi, N.A., Mahmoud, A.F., Sakr, T.M., Brain targetted rivastigmine mucoadhesive thermosensitive in situ gel: optimization, in vitro evaluation, radio-labelling, in vivo pharmacokinetics and biosdistribution (2018) J. Drug Delivery Sci. Technol., 43, pp. 129-140; Ahn, B.C., Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer (2016) Biomed. Res. Int., 2016, p. 1680464; Al-Wabli, R.I., Sakr, T.M.M.H., Khedr, M.A., Selim, A.A., El-Rahman, M.A.E.-M.A., Zaghary, W.A., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m (2016) Chem. Cent. J., 10, p. 73; Antonya, J.J., Sivalingamb, S., Sivaa, D., Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose (2011) Colloids Surf. B Biointerfaces, 88, pp. 134-140; Assadi, M., Afrasiabi, K., Nabipour, I., Seyedabadi, M., Nanotechnology and nuclear medicine; research and preclinical applications (2011) Hell. J. Nucl. Med., 14 (2), pp. 149-159; Banerjee, S., Pillai, M.R., Ramamoorthy, N., Evolution of Tc-99m in diagnostic radiopharmaceuticals (2001) Semin. Nucl. Med., 31, pp. 260-277; Bao, A., Goins, B., Klipper, R., Negrete, G., Phillips, W.T., Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies (2004) J. Pharmacol. Exp. Ther., 308, pp. 419-425; Dziendzikowska, K., Gromadzka, J., Lankoff, A., Oczkowski, M., Krawczynska, A., Chwastowska, J., Sadowska, M., Kruszewski, M., Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats (2012) J. Appl. Toxicol., 32 (11), pp. 920-928; Goel, S., Chen, F., Ehlerding, E.B., Cai, W., Intrinsically radiolabeled nanoparticles: an emerging paradigm (2014) Small, 10 (19), pp. 3825-3830; Gupta, K., Jana, P.C., Meikap, A.K., Optical and electrical transport properties of polyaniline-silver nanocomposites (2010) Synth. Met., 160, pp. 1566-1573; Hamoudeh, M., Kamleh, M.A., Diab, R., Fessi, H., Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer (2008) Adv. Drug Deliv. Rev., 60 (12), pp. 1329-1346; Hou, Y., Liu, Y., Chen, Z., Gu, N., Wang, J., Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging (2010) J. Nanobiotechnol., 8, p. 25; Klein, J., Probing the interactions of proteins and nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (7), pp. 2029-2030; Mirshojaei, S.F., Ahmadi, A., Avila, E.M., Reynoso, M.O., Perez, H.R., Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer (2016) J. Drug Target., 24 (2), p. 91; Mohamed, K.O., Nissan, Y.M., El-Malah, A.A., Ahmed, W.A., Ibrahim, D.M., Sakr, T.M., Motaleb, M.A., Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptotic agents (2017) Eur. J. Med. Chem., 135, pp. 424-433; Owens, D.E., Peppas, N.A., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles (2006) Int. J. Pharm., 307 (1), pp. 93-102; Parveen, S., Misra, R., Sahoo, S.K., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging (2012) Nanomedicine, 8 (2), pp. 147-166; Pratt, E.C., Shaffer, T.M., Grimm, J., Nanoparticles and radiotracers: advances toward radio-nanomedicine (2016) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 8 (6), pp. 872-890; Radovic, M., Calatayud, M.P., Goya, G.F., Ibarra, M.R., Antic, B., Spasojevic, V., Nikolic, N., Vranjes, D.S., Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy (2015) J. Biomed. Mater. Res. A, 103 (1), pp. 126-134; Sakr, T.M., Khedr, M.A., Rashed, H.M., Mohamed, M.E., In silico-based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anticancer activity (2018) Molecules, 23 (2), p. 496; Sanad, M.H., Sakr, T.M., Walaa, H.A., Marzook, E.A., In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors (2017) J. Radioanal. Nucl. Chem., 314 (30), pp. 1505-1515; Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M., Abdollahi, Y., Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method (2012) Int. J. Mol. Sci., 13 (6), pp. 6639-6650; Sheikh, A., Polack, B., Rodriguez, Y., Kuker, R., Nuclear molecular and theranostic imaging for differentiated thyroid cancer (2017) Mol. Imaging Radionuclide Ther., 26 (1), pp. 50-65; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging (2014) J. Label. Compd. Radiopharm., 57 (10), pp. 593-599; Swidan, M.M., Sakr, T.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging (2015) J. Radioanal. Nucl. Chem., 303 (1), pp. 531-539; Thakor, A.S., Gambhir, S.S., Nanooncology: the future of cancer diagnosis and therapy (2013) CA Cancer J. Clin., 63, pp. 395-418; Wall, M.A., Shaffer, T.M., Harmsen, S., Tschaharganeh, D.F., Huang, C.H., Lowe, S.W., Drain, C.M., Kircher, M.F., Chelator-free radiolabeling of SERRS nanoparticles for whole-body PET and intraoperative Raman imaging (2017) Theranostics, 7 (12), pp. 3068-3077; Zhao, J., Zhou, M., Li, C., Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy (2016) Cancer Nanotechnol., 7 (1), p. 9; Zielinska, A., Skwarek, E., Adriana, Z., Maria, G., Hupka, J., Preparation of silver nanoparticles with controlled particle size (2009) Procedia Chem., 1 (2), pp. 1560-1566
dcterms.source Scopus
dc.identifier.doi https://doi.org/10.1016/j.ejps.2018.06.029
dc.identifier.doi PubMed ID 29981892
dc.Affiliation October University for modern sciences and Arts (MSA)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search MSAR


Advanced Search

Browse

My Account