A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorDoha, Eid H.
dc.contributor.authorBhrawy, Ali H.
dc.contributor.authorAbdelkawy, Mohamed A.
dc.contributor.authorHafez, Ramy M.
dc.date.accessioned2019-12-04T11:12:52Z
dc.date.available2019-12-04T11:12:52Z
dc.date.issued2014
dc.descriptionAccession Number: WOS:000331705700005en_US
dc.description.abstractThis article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nystrom (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.en_US
dc.identifier.citationCited References in Web of Science Core Collection: 38en_US
dc.identifier.doihttps://doi.org/10.2478/s11534-014-0429-z
dc.identifier.issn1895-1082
dc.identifier.otherhttps://doi.org/10.2478/s11534-014-0429-z
dc.identifier.urihttps://cyberleninka.org/article/n/1095471/viewer
dc.language.isoenen_US
dc.publisherSCIENDOen_US
dc.relation.ispartofseriesCENTRAL EUROPEAN JOURNAL OF PHYSICS;Volume: 12 Issue: 2 Pages: 111-122
dc.relation.urihttps://cutt.ly/Ue3G5TV
dc.subjectUniversity for nonlinear coupled viscous Burgers' equationen_US
dc.subjectpseudospectral schemeen_US
dc.subjectimplicit Runge-Kutta-Nystrom schemeen_US
dc.subjectDIFFERENTIAL-EQUATIONSen_US
dc.subjectINTEGRAL-EQUATIONSen_US
dc.subjectNUMERICAL-SOLUTIONen_US
dc.subjectMODELen_US
dc.titleA Jacobi collocation approximation for nonlinear coupled viscous Burgers' equationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: