Fractional modeling dynamics of HIV and CD4 +T-cells during primary infection
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Arafa A.A.M. | |
dc.contributor.author | Rida S.Z. | |
dc.contributor.author | Khalil M. | |
dc.contributor.other | Department of mathematics | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | South Valley University | |
dc.contributor.other | Qena | |
dc.contributor.other | Egypt; Department of mathematics | |
dc.contributor.other | Faculty of Engineering | |
dc.contributor.other | Modern Science and Arts University (MSA) | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-25T19:58:28Z | |
dc.date.available | 2020-01-25T19:58:28Z | |
dc.date.issued | 2012 | |
dc.description | Scopus | |
dc.description.abstract | In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4 +T cells. We study the effect of the changing the average number of viral particles N with different sets of initial conditions on the dynamics of the presented model. Generalized Euler method (GEM) will be used to find a numerical solution of the HIV-1 infection fractional order model. � 2012 Arafa et al; licensee BioMed Central Ltd. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=18800156703&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1186/1753-4631-6-1 | |
dc.identifier.issn | 17534631 | |
dc.identifier.other | https://doi.org/10.1186/1753-4631-6-1 | |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275462/ | |
dc.language.iso | English | en_US |
dc.relation.ispartofseries | Nonlinear Biomedical Physics | |
dc.relation.ispartofseries | 6 | |
dc.subject | article | en_US |
dc.subject | CD4+ T lymphocyte | en_US |
dc.subject | generalized Euler method | en_US |
dc.subject | Human immunodeficiency virus 1 infection | en_US |
dc.subject | methodology | en_US |
dc.subject | molecular dynamics | en_US |
dc.subject | nonhuman | en_US |
dc.subject | primary infection | en_US |
dc.subject | priority journal | en_US |
dc.subject | statistical analysis | en_US |
dc.subject | virus particle | en_US |
dc.title | Fractional modeling dynamics of HIV and CD4 +T-cells during primary infection | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Nelson, P.W., Perelson, A.S., Mathematical analysis of delay differential equation models of HIV-1 infection (2002) Mathematical Biosciences, 179, pp. 73-94. , 10.1016/S0025-5564(02)00099-8, 12047922; Liancheng Wang, L., Li, Y.M., Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells (2006) Mathematical Biosciences, 200, pp. 44-57. , 10.1016/j.mbs.2005.12.026, 16466751; Culshaw, R.V., Ruan, S., A delay-differential equation model of HIV infection of CD4+ T -cells (2000) Mathematical Biosciences, 165, pp. 27-39. , 10.1016/S0025-5564(00)00006-7, 10804258; Tuckwell, H.C., Frederic, Y.M.W., On the behavior of solutions in viral dynamical models (2004) Bio Systems, 73, pp. 157-161. , 10.1016/j.biosystems.2003.11.004, 15026192; Merdan, M., Khan, T.Y., Homotopy perturbation method for solving viral dynamical model (2010) C. �. Fen-Edebiyat Fak�ltesi, Fen Bilimleri Dergisi, 31, pp. 65-77; Petrovic, L.M., Spasic, D.T., Atanackovic, T.M., On a mathematical model of a human root dentin (2005) Dental Materials, 21, pp. 125-128. , 10.1016/j.dental.2004.01.004, 15681010; Perelson, A.S., Modeling the interaction of the immune system with HIV (1989) Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, Springer, New York, 83, p. 350. , Castillo-Chavez C; Perelson, A.S., Kirschner, D.E., Boer, R.D., Dynamics of HIV infection of CD4+ T cells (1993) Mathematical Biosciences, 114, pp. 81-125. , 10.1016/0025-5564(93)90043-A, 8096155; Tuckwell, H.C., Frederic, Y.M.W., On the behavior of solutions in viral dynamical models (2004) Bio Systems, 73, pp. 157-161. , 10.1016/j.biosystems.2003.11.004, 15026192; Rong, L., Gilchrist, M.A., Feng, Z., Perelson, A.S., Modeling within host HIV-1 dynamics and the evolution of drug resistance: Trade offs between viral enzyme function and drug susceptibility (2007) Journal of Theoretical biology, 247, pp. 804-818. , 10.1016/j.jtbi.2007.04.014, 2265667, 17532343; Haiping, Y.D., A fractional-order differential equation model of HIV infection of CD4+ T cells (2009) Mathematical and Computer Modelling, 50, pp. 386-392; Culshaw, R.V., Ruan, S., A delay-differential equation model of HIV infection of CD4+ T-cells (2000) Mathematical Bioscience, 165, pp. 27-39; El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber (2009) International Journal of Nonlinear Science, 7, pp. 485-492; Rida, S.Z., El-Sherbiny, H.M., Arafa, A.A.M., On the solution of the fractional nonlinear Schr�dinger equation (2008) Physics Letters A, 372, pp. 553-558; Jesus, I.S., Machado, J.A.T., Cunha, J.B., Fractional electrical impedances in botanical elements (2008) Journal of Vibration and Control, 14, pp. 1389-1402; Jesus, I.S., Machado, J.A.T., Cunha, J.B., Fractional order electrical impedance of fruits and vegetables Proceedings of the 25th IASTED International Conference Modeling, identification, and control, February 6-8, 2006, Lanzarote, Canary Islands, Spain; Cole, K.S., Electric conductance of biological systems (1993) Proc Cold Spring Harbor Symp Quant. Biol, Cold Spring Harbor. New York, pp. 107-116; Djordjevi?, V.D., Jari?, J., Fabry, B., Fredberg, J.J., Stamenovi?, D., Fractional derivatives embody essential features of cell rheological behavior (2003) Annals of Biomedical Engineering, 31, pp. 692-699; El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A., Numerical solution for multi-term fractional (arbitrary) orders differential equations (2004) Computational and Applied Mathematics, 23, pp. 33-54; Zaid, M.O., Shawagfeh, N., Generalized Taylor's formula (2007) Applied Mathematics and Computation, 186, pp. 286-293; Hashim, I., Abdulaziz, O., Momani, S., Homotopy analysis method for fractional IVPs (2009) Communications in Nonlinear Science and Numerical Simulation, 14, pp. 674-684; Zaid, M.O., Momani, S., An algorithm for the numerical solution of differential equations of fractional order (2008) Journal of Applied Mathematics & Informatics, 26, pp. 15-27 | |
dcterms.source | Scopus |