Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404-optimization, characterization and antimicrobial activity.

dc.AffiliationOctober University for modern sciences and Arts (MSA)  
dc.AffiliationOctober University for modern sciences and Arts (MSA)  
dc.contributor.authorOmran B.A.
dc.contributor.authorNassar H.N.
dc.contributor.authorYounis S.A.
dc.contributor.authorEl-Salamony R.A.
dc.contributor.authorFatthallah N.A.
dc.contributor.authorHamdy A.
dc.contributor.authorEl-Shatoury E.H.
dc.contributor.authorEl-Gendy N.S.
dc.contributor.otherDepartment of Processes Design & Development
dc.contributor.otherEgyptian Petroleum Research Institute
dc.contributor.otherNasr City
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Microbiology
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th of October City
dc.contributor.otherEgypt; Depratment of Analysis and Evaluation
dc.contributor.otherEgyptian Petroleum Research Institute
dc.contributor.otherNasr City
dc.contributor.otherCairo
dc.contributor.otherEgypt; Department of Civil and Environmental Engineering
dc.contributor.otherHanyang University
dc.contributor.otherSeoul
dc.contributor.otherSouth Korea; Department of Microbiology
dc.contributor.otherFaculty of Science
dc.contributor.otherAin Shams University
dc.contributor.otherAbbassia
dc.contributor.otherCairo
dc.contributor.otherEgypt; Center of Excellence
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.other6th of October City
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:29Z
dc.date.available2020-01-09T20:40:29Z
dc.date.issued2020
dc.descriptionScopus
dc.description.abstractAims: Investigate the capability of Aspergillus brasiliensis ATCC 16404 to mycosynthesize Co3O4-NPs. Methods and Results: Mycelial cell-free filtrate of A. brasiliensis ATCC 16404 was applied for mycosynthesis of Co3O4-NPs. The preliminary indication for the formation of Co3O4-NPs was the change in colour from yellow to reddish-brown. One-factor-at a time-optimization technique was applied to determine the optimum physicochemical conditions required for the mycosynthesis of Co3O4-NPs and they were found to be: 72h for reaction time, pH 11, 30C, 100revmin?1 for shaking speed in the darkness using 4mmoll?1 of CoSO4.7H2O and 55% of A. brasiliensis dry weight mycelium (w/v). The mycosynthesized Co3O4-NPs were characterized using various techniques: spectroscopy including UV/Vis spectrophotometry, dynamic light scattering (DLS), zeta potential measurement, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy and X-ray diffraction; and vibrating sample magnetometry and microscopy including field emission scanning electron microscopy and high-resolution transmission electron microscopy. Spectroscopic techniques confirmed the formation of Co3O4-NPs and the microscopic ones confirmed the shape and size of the mycosynthesized Co3O4-NPs as quasi-spherical shaped, monodispersed nanoparticles with a nano size range of 20-27nm. The mycosynthesized Co3O4-NPs have excellent magnetic properties and exhibited a good antimicrobial activity against some pathogenic micro-organisms. Conclusion: Ferromagnetic Co3O4-NPs with considerable antimicrobial activity were for the first time mycosynthesized. Significance and Impact of the Study: The use of fungi as potential bionanofactories for mycosynthesis of nanoparticles is relatively a recent field of research with considerable prospects. 2019 The Society for Applied Microbiologyen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=20217&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1111/jam.14498.
dc.identifier.issn13645072
dc.identifier.otherDOI : 10.1111/jam.14498
dc.identifier.otherPubMed ID : 31650655
dc.identifier.urihttps://t.ly/R09pq
dc.language.isoEnglishen_US
dc.publisherBlackwell Publishing Ltden_US
dc.relation.ispartofseriesJournal of Applied Microbiology
dc.relation.ispartofseries128
dc.subjectantimicrobial activityen_US
dc.subjectcobalt oxide nanoparticlesen_US
dc.subjectmagnetic propertiesen_US
dc.subjectmycosynthesisen_US
dc.subjectphysicochemical factorsen_US
dc.subjectspectroscopic and microscopic techniquesen_US
dc.subjectAspergillus brasiliensisen_US
dc.subjectFungien_US
dc.titleNovel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404-optimization, characterization and antimicrobial activity.en_US
dc.typeArticleen_US
dcterms.isReferencedByAbdeen, S., Geo, S., Sornalekshmi, S., Rose, A., Praseetha, P.K., Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and actinomycetes sp. on human pathogens (2013) Nano Biomed Eng, 5, pp. 39-45; Ahmad, A., Wei, Y., Syed, F., Tahir, K., Rehman, A.U., Khan, A., Ullah, S., Yuan, Q., The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles (2017) Microb Pathog, 102, pp. 133-142; Allaedini, G., Muhammad, A., Study of influential factors in synthesis and characterization of cobalt oxide nanoparticles (2013) J Nanostructure Chem, 3, pp. 77-93; Balakumaran, M.D., Ramachandran, R., Balashanmugam, P., Mukeshkumar, D.J., Kalaichelvan, P.T., Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens (2016) Microbiol Res, 182, pp. 8-20; Birla, S.S., Gaikwad, S.C., Gade, A.K., Rai, M.K., Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions (2013) Sci World J, 2013, p. 12. , https://doi.org/10.1155/2013/796018; Chekin, F., Vahdat, S.M., Asadi, M.J., Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior (2016) Russ J Appl Chem, 89, pp. 816-822; Chowdhury, S., Basu, A., Kundu, S., Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) goid with antimicrobial properties against multidrug-resistant bacteria (2014) Nanoscale Res Lett, 9, pp. 1-11; Das, S.K., Das, A.R., Guha, A.K., Microbial synthesis of multishaped gold nanostructures (2010) Small, 6, pp. 1012-1021; Diallo, A., Beye, A.C., Doyle, T.B., Park, E., Maaza, M., Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties (2015) Green Chem Lett Rev, 8, pp. 30-36; Djafari, J., Marinho, C., Santos, T., Igrejas, G., Torres, G., Capelo, J.L., Poeta, P., Lodeiro, C., New synthesis of gold-and silver-based nano-tetracycline composites (2016) Chemistry Open, 5, pp. 206-212; Donaldson, J.D., Beyersmann, D., Cobalt and cobalt compounds (2005) Ullmann's Encyclopedia of Industrial Chemistry, pp. 429-464. , Weinheim, Wiley-VCH; Elgorban, A.M., Al-Rahmah, A.N., Sayed, S.R., Hirad, A., Mostafa, A.A., Bahkali, A.H., Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride (2016) Biotechnol Biotechnol Equip, 30, pp. 299-304; El-Salamony, R.A., Amdeha, E., Ghoneim, S.A., Badawy, N.A., Salem, K.M., Al-Sabagh, A.M., Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation (2017) EnvironTechnol, 38, pp. 3122-3136; Emami-Karvani, Z., Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria (2012) African J Microbiol Res, 5, pp. 1368-1373; Farahmandjou, M., Shadrokh, S., Branch, V.P., Chemical synthesis of the Co3O4 nanoparticles in presence of CTAB surfactant (2015) Int J Bioinorg Hybird Nanomat, 4, pp. 129-134; Farhadi, S., Safabakhsh, J., Zaringhadam, P., (2013) Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles (2013) J Nanostructure Chem, 3, pp. 69-78; Gannimani, R., Perumal, A., Krishna, S.B., Muthusamy, S.K., Mishra, A., Govender, P., Synthesis and antibacterial activity of silver and gold nanoparticles produced using aqueous seed extract of Protorhus longifolia as a reducing agent (2014) Dig. J. Nanomater Bios, 9, pp. 1669-1679; Hosseini-Abari, A., Emtiazi, G., Ghasemi, S.M., Development of an eco-friendly approach for biogenesis of silver nanoparticles using spores of Bacillus athrophaeus (2013) World J Microbiol Biotechnol, 29, pp. 2359-2236; Jasuja, N.D., Gupta, D.K., Reza, M., Joshi, S.C., Green synthesis of AgNPs stabilized with biowaste and their antimicrobial activities (2014) Brazilian J Microbiol, 45, pp. 1325-1332; Kahani, S.A., Khedmati, M., Mechanochemical preparation of cobalt nanoparticles through a novel intramolecular reaction in cobalt (II) complexes (2015) Journal of Nanomaterials, 2015, p. 8. , https://doi.org/10.1155/2015/246254; Kashyap, P.L., Kumar, S., Srivastava, A.K., Sharma, A.K., Myconanotechnology in agriculture: a perspective (2013) World J Microbiol Biotechnol, 29, pp. 191-207; Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwaria, Z.K., Maaza, M., Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.) (2017) Arab J Chem, , https://doi.org/10.1016/j.arabjc.2017.07.004; Khan, N.T., Jameel, M., Optimization studies of silver nanoparticle synthesis by Aspergillus terreus (2016) J Microb Biochem Technol, 8, pp. 1-3; Khan, S., Ansari, A.A., Khan, A., Ahma, R., Al-Obaid, O., Al-Kattan, W., In vitro evaluation of anticancer and antiba
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: