Improvement of the physical properties of chitosan by γ-ray degradation for wound healing
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Madian N.G. | |
dc.contributor.author | El-Hossainy M. | |
dc.contributor.author | Khalil W.A. | |
dc.contributor.other | Department Biophysics | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Department of Physics | |
dc.contributor.other | Faculty of Dentistry | |
dc.contributor.other | MSA University | |
dc.contributor.other | 6 of October | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:40:48Z | |
dc.date.available | 2020-01-09T20:40:48Z | |
dc.date.issued | 2018 | |
dc.description | Scopus | |
dc.description.abstract | Improving the physical properties of chitosan films by irradiation with different doses (5, 10, 15, 20 and 25 kGy) of ?-rays to be used as a wound healing material. Mechanical properties and dielectric spectroscopy were measured for the films. Results showed that at low ?-dose, tensile strength (TS) elongation percent (E%) increase, while E-modulus, ?? ?? and ?A.C decrease due to the accumulation of ions between the chitosan chains which make a bulk network due to hydrogen bonds. This will make the film more elastic and high biodegradable which is preferred in wound healing. While the contrary was observed by increasing the radiation dose, chain scission occur resulting in weak chitosan interchain bonds and this will increase the mobility of the segments which increase the rigidity. In conclusion, the dose of 5 kGy was the most optimum for the properties of chitosan films used in the application of wound healing. 2018 The Authors | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19900192162&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1016/j.rinp.2018.10.051 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 22113797 | |
dc.identifier.other | https://doi.org/10.1016/j.rinp.2018.10.051 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://t.ly/X08rZ | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartofseries | Results in Physics | |
dc.relation.ispartofseries | 11 | |
dc.subject | Chain scission | en_US |
dc.subject | Chitosan | en_US |
dc.subject | Mobility | en_US |
dc.subject | Tensile strength | en_US |
dc.title | Improvement of the physical properties of chitosan by γ-ray degradation for wound healing | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Groeber, F., Holeiter, M., Hampel, M., Schenke, S.H., layland, K., Skin tissue engineering In vivo and in vitro applications (2011) Adv Drug Deliv Rev, 63 (4-5), pp. 352-366; Lu, S., Gao, W., Gu, H.Y., Construction, application and biosafety of silver nano-crystalline chitosan wound dressing (2008) J Burns, 34 (5), pp. 623-628; Alsarra, I.A., Chitosan topical gel formulation in the management of burn wounds (2009) Int J Biol Macromol, 45 (1), pp. 16-21; Lacie, E.W., Wound healing cellular mechanisms alternative therapies and clinical outcomes (2015), Nova Science Publishers, Inc. New York; Szyma?ska, E., Winnicka, K., Stability of chitosan-a challenge for pharmaceutical and biomedical applications (2015) J Mar Drugs, 13, pp. 1819-1846; Dotto, L.G., Campana-Filho, S.P., De Almeida Pinto, L.A., Frontiers in biomaterials: chitosan based materials and its applications (Vol. 3) (2017), Bentham Science Publishers; Jayakumar, R., Prabaharan, M., Kumar, P.T.S., Nair, S., V and Tamura H., Biomaterials based on chitin and chitosan in wound dressing applications (2011) Biotechnol Adv, 29 (3), pp. 322-337; Radhakumary, C., Antonty, M., Sreenivasa, K., Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing (2011) J Carbohydr Polym, 83 (2), pp. 705-713; Fan, L., Yang, H., Yang, J., Peng, M., Hu, J., Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings (2016) Carbohydr Polym, 146, pp. 427-444; Bano, I., Ghauri, M.A., Yasin, T., Huang, Q., Palaparthi, A.D.S., Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol) (2014) Int J Biol Macromol, 65, pp. 81-88; Mozalewska, W., Czechowska-biskup, R., Olejnik, A.K., Wach, R.A., Ula?ski, P., Rosiaka, J.M., Chitosan-containing hydrogel wound dressings prepared by radiation technique (2017) J Radiat Phys Chem, 134, pp. 1-7; Vanichvattanadecha, C., Supaphol, P., Nagasawa, N., Tamada, M., Tokura, S., Furuike, T., Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan (2010) J Polym Degrad Stab, 95 (2), pp. 234-244; Raghu, S., Archana, K., Sharanappa, C., Ganesh, S., Devendrappa, H., Electron beam and gamma ray irradiated polymer electrolyte films: dielectric properties (2016) J Radiat Res Appl Sci, 9, pp. 117-124; Lus, J.V., Anglica, D., Jordi, P., Review hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives (2017) Gels, 3, p. 27; Sharmin, N., Khan, R.A., Dussault, D., Salmieri, S., Akter, N., Lacroix, M., Effectiveness of silane monomer and gamma radiationon chitosan films and PCL-based composites (2012) J Radiat Phys Chem, 81, pp. 932-935; Akter, N., Khan, R.A., Salmieri, S., Sharmin, N., Dussault, D., Lacroix, M., Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: effect of gamma radiation (2012) J Radiat Phys Chem, 81 (8), pp. 995-998; Nasreen, Z., Khan, M.A., Mustafa, A.I., Film prepared from chitosan-gelatin blend (2016) J Appl Chem, pp. 16-18; Bisen, D.S., Bhatt, R., Bajpai, A.K., Bajpai, R., Katare, R., Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications (2017) J Mater Sci Eng C, 71, pp. 982-993; Suderman, N., Isa, M.I.N., Sarbon, N.M., Effect of drying temperature on the functional properties of biodegradable CMC-based film for potential food packaging (2016) Int Food Res J, 23, pp. 1075-1084; Zainol, I., Akil, H., Mastor, A., Effect of [gamma]-irradiation on the physical and mechanical properties of chitosan powder (2009) Mater Sci Eng, 29 (1), pp. 292-297; Tanvir, A., Al-Maadeed, M.A., Hassan, M.K., Secondary chain motion and mechanical properties of irradiated-regenerated cellulose films (2016) Starch, 68, pp. 1-8; Tanvir, A., Al-Maadeed, M.A., Hassan, M.K., Secondary chain motion and mechanical properties of irradiated-regenerated cellulose films (2017) Starch, 69, pp. 1-8; Kilic, M., Karabul, Y., Alkan, U., Yagci, O., Okutan, M., Okutan, M., Gamma-ray irradiation effect on mechanical and dielectric properties of volcanic basalt mineral reinforced (2017) J Physiochem Probl Miner Process, 53 (1), pp. 578-590; Johns, J., Nakason, C., Dielectric properties of natural rubber/chitosan blends: effects of blend ratio and compatibilization (2011) J Non-Cryst Solids, 357 (7), pp. 1816-1821; Badry, M.D., Wahb, M.A., Khaled, R.K., Farghali, A.A., Preparation and dielectric properties of magnetite/chitosan nanocomposite film experimental (2015) Middle East J Appl Sci, 5 (4), pp. 940-944; Aziz, S.B., Study of electrical percolation phenomenon from the dielectric and electric modulus analysis (2015) J Bull Mater Sci, 38 (6), pp. 1597-1602; Sunilkumar, M., Gafoor, A.A., Anas, A., Haseena, A.P., Sujith, A., Dielectric properties: a gateway to antibacterial assay�a case study of low-density polyethylene/chitosan composite films (2014) Polym J, 46 (7), pp. 422-429; Sunilkumar, M., Francis, T., Thachil, E.T., Sujith, A., Low density polyethylene-chitosan composites: a study based on biodegradation (2012) Chem Eng J, 204-205, pp. 114-124; Elsawy, M.A., Saad, G.R., Sayed, A.M., Mechanical, thermal, and dielectric properties of poly(lactic acid)/chitosan nanocomposites (2016) J Polym Eng Sci, pp. 987-994; Sarmad, S., Yencic, G., Gurkan, K., Keceli, G., Gurdag, G., Electric field responsive chitosan�poly(N,N-dimethyl acrylamide) semi-IPN gel films and their dielectric, thermal and swelling characterization (2013) J Smart Mater Struct, 22 (5); Islam, S., Arnold, L., Padhye, R., Comparison and characterisation of regenerated chitosan from 1-butyl-3-methylimidazolium chloride and chitosan from crab shells (2015) Biomed Res Int J | |
dcterms.source | Scopus |