Fixed ground-target tracking control of satellites using a nonlinear model predictive control

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorElbeltagy A.E.H.M.
dc.contributor.authorYoussef A.M.
dc.contributor.authorBayoumy A.M.
dc.contributor.authorElhalwagy Y.Z.
dc.contributor.otherAircraft Mechanics Dep.
dc.contributor.otherMTC
dc.contributor.otherCairo
dc.contributor.otherEgypt; Aircraft Electric Equipment Dep.
dc.contributor.otherMTC
dc.contributor.otherCairo
dc.contributor.otherEgypt; Mechanical Engineering Dep.
dc.contributor.otherMSA
dc.contributor.otherCairo
dc.contributor.otherEgypt; Navigation Dep.
dc.contributor.otherMTC
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:57Z
dc.date.available2020-01-09T20:40:57Z
dc.date.issued2018
dc.descriptionScopus
dc.description.abstractThis paper proposes a novel solution to the fixed-ground target tracking control problem of satellites utilizing a Nonlinear Model Predictive Control approach (NMPC). The Continuation / Generalized Minimal Residual (C/GMRES) algorithm is selected as a promising fast solver to an optimal control problem in real time. The algorithm could perfectly deal with the huge computational load of this approach, represented in solving Riccati differential equation, by simple and efficient approximations. A new control-oriented model converting the main tracking problem into a simple regulation problem is developed. This simple and easy traceable reformulated model has an advantage in dealing with modeling errors and unplanned external environmental disturbances. The update of the control input is obtained by integrating a deduced time-dependent inputs and Lagrange multipliers vector; representing the solution of a set of linear equations and corresponding to the optimality conditions. The proposed algorithm is simulated using real satellite parameters to track a fixed-ground target for reconnaissance purposes. The simulation results show that the algorithm of C/GMRES method can track a desired fixed ground target robustly, with precise tracking error and guaranteed safe stability limits for shooting activities throughout the overpass flight. � 2017 IIETA.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100863633&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.18280/mmep.050102
dc.identifier.doiPubMed ID :
dc.identifier.issn23690739
dc.identifier.otherhttps://doi.org/10.18280/mmep.050102
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/GJz8X
dc.language.isoEnglishen_US
dc.publisherInternational Information and Engineering Technology Associationen_US
dc.relation.ispartofseriesMathematical Modelling of Engineering Problems
dc.relation.ispartofseries5
dc.subjectC/GMRES methoden_US
dc.subjectGround-target trackingen_US
dc.subjectImage qualityen_US
dc.subjectOptimizationen_US
dc.subjectPredictive controlen_US
dc.titleFixed ground-target tracking control of satellites using a nonlinear model predictive controlen_US
dc.typeArticleen_US
dcterms.isReferencedByOhtsukan, T., A continuation/GMRES method for fast computation of nonlinear receding horizon control (2004) Journal of Automatica, 40 (4), pp. 563-574. , https://doi.org/10.1016/j.automatica.2003.11.005; Kelley, C.T., GMRES Iteration, Iterative methods for linear and nonlinear equations, (16), Philadelphia, Pa.: Society for Industrial and Applied Mathematics (1995) North Carolina, pp. 33-60; Kouramas, K.I., Panos, C., Faisca, N.P., Pistikopoulos, E.N., An algorithm for robust explicit/multi-parametric model predictive control (2013) Journal of Automatica, 49 (2), pp. 381-389. , https://doi.org/10.1016/j.automatica.2012.11.035; Ohtsuka, T., A tutorial on C/GMRES and automatic code generation for nonlinear model (2015) European Control Conference, pp. 73-86. , https://doi.org/10.1109/ECC.2015.7330528, Linz, Austria; Tajeddin, S., Vajedi, M., Azad, N.L., A Newton/GMRES approach to predictive ecological adaptive cruise control of a plug-in hybrid electric vehicle in car-following scenarios (2016) International Federation of Automatic Control, 49 (21), pp. 059-065; Richter, S.L., Decarlo, R.A., Continuation methods: Theory and applications, IEE (1983) Transactions on Circuits and Systems, 28 (6), pp. 660-665. , https://doi.org/10.1109/TAC.1983.1103294; Weiss, H., Quaternion-based rate/attitude tracking system with application to gimbal attitude control (1993) Journal of Guidance, Control, and Dynamics, 16 (4), pp. 609-616. , https://doi.org/10.2514/3.21057; Chen, X.J., Willem, H.S., Hashida, Y., Ground-target tracking control of earth-pointing satellites (2000) AIAA Guidance, Navigation And Control Conference, Denver, USA, , https://doi.org/10.2514/6.2000-4547; Vuuren, G.H., Willem, S.H., (2015) The design and simulation analysis of an attitude determination and control system for a small earth satellite, , M.S thesis, Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch; Wahballah, W., Bazan, T.M., El-tohamy, F., Fathy, M., (2016) Analysis of smear in high-resolution remote sensing satellites, pp. 1-11. , SPIE, Edinburgh. UK; Sun, W., (2000) In-Orbit Results From UOSAT-12 Earth Observation Minisatellite Mission, pp. 1-4. , IAA-B3-0305P, Guildford, Surrey
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
Fixed_ground-target_tracking_control_of_satellites.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description: