Spatial-spectral hyperspectral image clustering using cluster's bands box-plots

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorAl Moghalis M.A.
dc.contributor.authorHegazy O.M.
dc.contributor.authorImam I.F.
dc.contributor.authorEl-Bastawessy A.H.
dc.contributor.otherDep. of Information Systems
dc.contributor.otherCollege of Computer and Information Systems
dc.contributor.otherAlyamamah University
dc.contributor.otherKSA
dc.contributor.otherSaudi Arabia; Dep. of Information Systems
dc.contributor.otherFaculty of Computers and Information
dc.contributor.otherCairo University
dc.contributor.otherEgypt; Dep. of Computer Science
dc.contributor.otherCollege of Computing and Information Technology
dc.contributor.otherArab Academy for Science
dc.contributor.otherTechnology and Maritime Transport
dc.contributor.otherEgypt; Dea. of Faculty of Computer Science
dc.contributor.otherMSA University
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:42:16Z
dc.date.available2020-01-09T20:42:16Z
dc.date.issued2014
dc.descriptionScopus
dc.description.abstractThe attention given recently for Hyperspectral Images (HSI) in remote sensing was due to its spectral nature used in earth surface exploration. Recently, researches proposed approaches that combine features of spatial nature with spectral nature to enhance HSI analysis accuracy. The reason behind this orientation is that contiguous pixels mostly share spectral features due to the low spatial resolution. In this paper, authors follow this orientation in clustering HSI using K-means. The proposed approach uses kernels, group of spatially neighbored pixels, to build profile for each cluster. The profile preserves cluster's spectral nature through its bands' Box-Plots that were extracted from selected kernels. The approach starts by selecting K kernels from the given image scene randomly instead of generating random kernels. Then a profile for each cluster is built using the selected kernel pixels' spectrums. The profile consists of b box-plots, where b is the number of bands. Each band box-plot interprets the spread of contiguous pixels' reflectance values in that band. Each pixel in the image will join the nearest cluster. The distance to be measured between any given pixel spectrum and cluster's centroid is replaced by counting how many reflectance values have been considered outlier to their corresponding band's box-plot in that cluster profile. The pixel will join the cluster with minimum outlier count. The profiles are updated iteratively using the new pixels distribution. Data sets used in the experiments are captured by Hyperion Earth Observer 1 (EO-1) sensor. Copyright � 2014 IADIS Press All rights reserved.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100390392&tip=sid&clean=0
dc.identifier.isbn9.79E+12
dc.identifier.urihttps://t.ly/6x2eB
dc.language.isoEnglishen_US
dc.publisherIADISen_US
dc.relation.ispartofseriesProceedings of the European Conference on Data Mining 2014 and International Conferences on Intelligent Systems and Agents 2014 and Theory and Practice in Modern Computing 2014 - Part of the Multi Conference on Computer Science and Information Systems, MCCSIS 2014
dc.subjectOctober University for Modern Sciences and Arts
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectMSA University
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectClusteringen_US
dc.subjectHyperspectral imagesen_US
dc.subjectImage processingen_US
dc.subjectK-meansen_US
dc.subjectRemote sensingen_US
dc.subjectComputation theoryen_US
dc.subjectData miningen_US
dc.subjectImage processingen_US
dc.subjectIndependent component analysisen_US
dc.subjectIntelligent agentsen_US
dc.subjectIntelligent systemsen_US
dc.subjectReflectionen_US
dc.subjectRemote sensingen_US
dc.subjectSpectroscopyen_US
dc.subjectStatisticsen_US
dc.subjectAnalysis accuracyen_US
dc.subjectClusteringen_US
dc.subjectHyper-spectral imagesen_US
dc.subjectK-meansen_US
dc.subjectRandom kernelsen_US
dc.subjectReflectance valuesen_US
dc.subjectSpatial resolutionen_US
dc.subjectSpectral featureen_US
dc.subjectPixelsen_US
dc.titleSpatial-spectral hyperspectral image clustering using cluster's bands box-plotsen_US
dc.typeConference Paperen_US
dcterms.isReferencedByLi, J., Bioucas-Dias, M., Plaza, A., Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning (2013) IEEE Transactions on Geoscience and Remote Sensing, 51 (2), pp. 844-856; Fauvela, M., Chanussotb, J., Benediktssonc, J.A., A spatial-spectral kernel based approach for the classification of remote sensing images (2012) Journal of Pattern Recognition, 45, pp. 381-392; Canham, K., Schlamm, A., Basener, B., Messinger, D., High spatial resolution hyperspectral spatially adaptive endmember selection and spectral unmixing (2011) Proceedings of SPIE 8048, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII, , 80481O; Magnussen, S., Boudewyn, P., Wulder, M., Contextual classification of Landsat TM images to forest inventory cover types (2004) International Journal of Remote Sensing, 25 (12), pp. 2421-2440; Eches, O., Dobigeon, N., Tourneret, J., Enhancing hyperspectral image unmixing with spatial correlations (2011) IEEE Transactions on Geoscience & Remote Sensing, 49, pp. 4239-4247; Ghamisi, P., Benediktsson, J., Cavallaro, G., Plaza, A., Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, M., Li, X., Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization (2014) IEEE Transactions on Geoscience and Remote Sensing; Tarabalka, Y., Tilton, C., Spectral-Spatial classification of hyperspectral images using hierarchical optimization (2011) Proceedings of Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, , Lisbon, Portugal; Tarabalka, Y., Benediktsson, J., Chanussot, J., Spectral spatial classification of hyperspectral imagery based on partitional clustering techniques (2009) IEEE Trans. Geos. and Remote Sensing, 47, pp. 2973-2987; Baowei, F., Akbari, Halig, Hyperspectral imaging and spectral-spatial classification for cancer detection (2012) Proceedings of Biomedical Engineering and Informatics (BMEI) 5th International Conference, pp. 62-64. , Chongqing, China; Fauvel, M., Benediktsson, J., Chanussot, J., Sveinsson, J., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles (2008) Geoscience and Remote Sensing, IEEE Transactions, 46 (11), pp. 3804-3814
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: