Fuzzy gaussian classifier for combining multiple learners
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Ali F. | |
dc.contributor.author | El Gayar N. | |
dc.contributor.author | El Ola S. | |
dc.contributor.other | Faculty of Computer Science | |
dc.contributor.other | October University for Modern Science and Arts | |
dc.contributor.other | 6th October City | |
dc.contributor.other | Egypt; Faculty of Computers and Information | |
dc.contributor.other | Cairo University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Center for Informatics Science | |
dc.contributor.other | School of Communication and Information Technology | |
dc.contributor.other | Nile University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-25T19:58:33Z | |
dc.date.available | 2020-01-25T19:58:33Z | |
dc.date.issued | 2010 | |
dc.description | Scopus | |
dc.description.abstract | In the field of pattern recognition multiple classifier systems based on the combination of outputs from different classifiers have been proposed as a method of high performance classification systems. The objective of this work is to develop a fuzzy Gaussian classifier for combining multiple learners, we use a fuzzy Gaussian model to combine the outputs obtained from K-nearest neighbor classifier (KNN), Fuzzy K-nearest neighbor classifier and Multi-layer Perceptron (MLP) and then compare the results with Fuzzy Integral, Decision Templates, Weighted Majority, Majority Na�ve Bayes, Maximum, Minimum, Average and Product combination methods. Results on two benchmark data sets show that the proposed fusion method outperforms a wide variety of existing classifier combination methods. | en_US |
dc.description.sponsorship | itida | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19700174726&tip=sid&clean=0 | |
dc.identifier.isbn | 978 970000000 | |
dc.identifier.uri | https://t.ly/Ggx2E | |
dc.language.iso | English | en_US |
dc.relation.ispartofseries | INFOS2010 - 2010 7th International Conference on Informatics and Systems | |
dc.subject | Classifier combination | en_US |
dc.subject | Fuzzy gaussian classifier | en_US |
dc.subject | Fuzzy K-nearest neighbors | en_US |
dc.subject | K-nearest neighbors | en_US |
dc.subject | Multi-layer perceptron | en_US |
dc.subject | Benchmark data | en_US |
dc.subject | Classification system | en_US |
dc.subject | Classifier combination | en_US |
dc.subject | Decision template | en_US |
dc.subject | Fusion methods | en_US |
dc.subject | Fuzzy integral | en_US |
dc.subject | Fuzzy K-nearest neighbor classifier | en_US |
dc.subject | Gaussian classifier | en_US |
dc.subject | Gaussian model | en_US |
dc.subject | K-nearest neighbor classifier | en_US |
dc.subject | K-nearest neighbors | en_US |
dc.subject | Multi layer perceptron | en_US |
dc.subject | Multiple classifier systems | en_US |
dc.subject | Product combinations | en_US |
dc.subject | Fuzzy control | en_US |
dc.subject | Gaussian distribution | en_US |
dc.subject | Information science | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Membership functions | en_US |
dc.subject | Pattern recognition systems | en_US |
dc.subject | Text processing | en_US |
dc.subject | Classifiers | en_US |
dc.title | Fuzzy gaussian classifier for combining multiple learners | en_US |
dc.type | Conference Paper | en_US |
dcterms.isReferencedBy | Kuncheva, L.I., Combinations of multiple classifiers using fuzzy set (2000) Fuzzy Classifier Sign, pp. 233-267. , Springer-Verlag; Kuncheva, L.I., (2004) Combining Pattern Classifiers. Methods and Algorithms, , Wiley; Kuncheva, L.I., 'Fuzzy' vs 'Non-fuzzy' in combining classifiers designed by boosting (2003) IEEE Transactions on Fuzzy Systems, 11 (6); Roli, F., Giacinto, G., Design of Multiple Classifier Systems (2002) Hybrid Methods in Pattern Recognition, , H Bunke and A Kandel (Eds.) , World scientific; Kuncheva, L.I., 'Fuzzy' vs 'non-fuzzy' in combining classifiers: An experimental study Proc LFA'01, Mons, Belgium, 2001; Multiple Classifier Systems (2000) Lecture Notes in Computer Science, 1857-5519. , Springer Verlag, 2096 (2001), 2364 (2002), 2709 (2003), 3077 (2004), 3541 (2005), 4472 (2007); Ruta, D., Gabrys, B., An overview of classifier fusion methods (2000) Comput. Inform. Systems, 7, pp. 1-10; El Gayar, N., Schwenker, F., Palm, G., (2006) A Study of the Robustness of KNN Classifiers Trained Using Soft Labels, , ANNPR; Keller, J.M., Gray, M.R., Givens Jr., J.A., A fuzzy k-nearest neighbor algorithm IEEE Trans. Syst. Man Cybern., 15 (4), pp. 580-585; Armstrong, J.S., Combining forecasts, in principles of Forecasting (2001) A Handbook for Researchers and Practitioners, pp. 417-439. , Kluwer Academic Publishers; Rebecca Fay, F.S., Kaufmann, U., Palm, G., Learning object recognition in a neurobotic system (2004) 3rd Workshop on Self Organizing of Adaptive Behavior SOAVE 2004, pp. 198-209. , Horst-Michael Gro, Klaus Debes, and Hans-Joachim Bohme, editors; Asuncion, A., Newman, D.J., Uci Machine Learning Repository, , http://www.ics.uci.edu/mlearn/MLRepository.html, 2007; Huang, Y.S., Suen, C.Y., A method of combining multiple experts for the recognition of unconstrained handwritten numerals (1995) IEEETrans. Pattern Anal. Machine Intell., 17, pp. 90-93; Gader, P.D., Mohamed, M.A., Keller, J.M., Fusion of hand-written word classifiers (1996) Pattern Recognition Lett., 17, pp. 577-584; Cho, S.-B., Kin, J.H., Combining multiple neural networks by fuzzy integral and robust classification (1995) IEEE Trans. Systems Man Cybernet., 25, pp. 380-384; Kuncheva, L.I., Using measures of similarity and inclusion for multiple classifier fusion by decision templates (2001) Fuzzy Sets Systems, 122, pp. 401-407; Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W., Decision templates for multiple classifier fusion: An experimental comparison (2001) Pattern Recognition; Thomas, D., Der, S.Z., (2002) Voting Techniques for Combining Multiple Classifiers, , Army Research Laboratory, ARL-TR-1549, March. Lefevre, E., Colot, O., Vannoorenberghe, P., Belief function | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: