Oxidative stress and apoptosis are markers in renal toxicity following Egyptian cobra (Naja haje) envenomation
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Dkhil M.A. | |
dc.contributor.author | Al-Quraishy S. | |
dc.contributor.author | Farrag A.R.H. | |
dc.contributor.author | Aref A.M. | |
dc.contributor.author | Othman M.S. | |
dc.contributor.author | Moneim A.E.A. | |
dc.contributor.other | Department of Zoology | |
dc.contributor.other | College of Science | |
dc.contributor.other | King Saud University | |
dc.contributor.other | Riyadh | |
dc.contributor.other | Saudi Arabia; Department of Zoology and Entomology | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Pathology Department | |
dc.contributor.other | Medical Research Division | |
dc.contributor.other | National Research Centre | |
dc.contributor.other | Cairo | |
dc.contributor.other | Egypt; Biological Science Department | |
dc.contributor.other | Faculty of Dentistry | |
dc.contributor.other | Modern Sciences and Arts University | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt; Biochemistry and Molecular Biology Department | |
dc.contributor.other | Faculty of Biotechnology | |
dc.contributor.other | Modern Science and Arts | |
dc.contributor.other | Giza | |
dc.contributor.other | Egypt | |
dc.date.accessioned | 2020-01-09T20:42:19Z | |
dc.date.available | 2020-01-09T20:42:19Z | |
dc.date.issued | 2014 | |
dc.description | Scopus | |
dc.description.abstract | Snakebite is a serious and important problem in tropical and subtropical countries including Egypt. The venom of Egyptian cobra (Naja haje; L.) is complex, and it has been considered as a good source of short neurotoxins and several cytotoxins. In this study, oxidative stress inductions as well as apoptotic effects of the Egyptian cobra crude venom at a dose of 0.025mg/kg (intraperitoneal injection; i.p.) has been investigated in kidney of rats after 4 h. Twelve rats divided into 2 groups, Group I served as control group, Group II received i.p. injection of 0.025mg/kg of crude venom. The venom enhanced lipid peroxidation and nitric oxide productions in the kidney with concomitant reduction in glutathione content and superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase activities were inhibited. Moreover, the venom induced a renal injury as indicated by histopathological changes in the kidney tissue with an elevation in serum creatinine and urea. In addition, the renal ultrastructural changes were in the form of blebbing of visceral epithelial cells, and foot process disorganization. Also, the glomerular capillaries lined by hypertrophied endothelial cells. These findings were associated with the pro-apoptotic action in the kidney. The results suggest that Egyptian cobra venom stimulates oxidative stress to induce apoptosis in renal tissue through inhibition of mitochondrial respiration in male rats. Copyright 2014 Zoological Society of Pakistan. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=23309&tip=sid&clean=0 | |
dc.identifier.issn | 309923 | |
dc.identifier.uri | https://t.ly/j66V8 | |
dc.language.iso | English | en_US |
dc.publisher | University of Punjab (new Campus) | en_US |
dc.relation.ispartofseries | Pakistan Journal of Zoology | |
dc.relation.ispartofseries | 46 | |
dc.subject | Apoptosis | en_US |
dc.subject | Egyptian cobra venom | en_US |
dc.subject | Oxidative stress | en_US |
dc.subject | Renal toxicity | en_US |
dc.subject | apoptosis | en_US |
dc.subject | histopathology | en_US |
dc.subject | lipid | en_US |
dc.subject | mitochondrion | en_US |
dc.subject | oxidation | en_US |
dc.subject | snake | en_US |
dc.subject | toxicity | en_US |
dc.subject | venom | en_US |
dc.subject | Egypt | en_US |
dc.subject | Naja haje | en_US |
dc.subject | Naja haje haje | en_US |
dc.subject | Rattus | en_US |
dc.title | Oxidative stress and apoptosis are markers in renal toxicity following Egyptian cobra (Naja haje) envenomation | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Abdel Moneim, A.E., Ortiz, F., Leonardomendoca, R.C., Vergano-Villodres, R., Guerrero-Mart�nez, J.A., L�pez, L.C., Acu�a-Castroviejo, D., Escames, G., Protective effects of melatonin against oxidative damage induced by LD50 Naja haja crude venom in rats (2014) Acta Trop., , in press; Abdel Moneim, A.E., Othman, M.S., Aref, A.M., Azadirachta indica attenuates cisplatininduced nephrotoxicity and oxidative stress (2014) BioMed Res. Int., 11, p. 647131; Aebi, H., Catalase in vitro (1984) Methods Enzymol., 105, pp. 121-126; Al-Quraishy, S., Dkhil, M., Abdel Moneim, A.E., Hepatotoxicity and oxidative stress induced by Naja haje crude venom (2014) J. Venom. Anim. Toxins Incl. Trop. Dis., 20, p. 42; Al-Sadoon, M.K., Orabi, G.M., Badr, G., Toxic effects of crude venom of a desert cobra, Walterinnesia aegyptia, on liver, abdominal muscles and brain of male albino rats (2013) Pakistan J. Zool., 45, pp. 1359-1366; Barrington, P.L., Soons, K.R., Rosenberg, P., Cardiotoxicity of Naja nigricollis phospholipase A2 is not due to alterations in prostaglandin synthesis (1986) Toxicon, 24, pp. 1107-1116; Chaim-Matyas, A., Borkow, G., Ovadia, M., Synergism between cytotoxin P4 from the snake venom of Naja nigricollis nigricollis and various phospholipases (1995) Comp. Biochem. Physiol. B Biochem. Mol. Biol., 110, pp. 83-89; Dai, G.L., He, J.K., Xie, Y., Han, R., Qin, Z.H., Zhu, L.J., Therapeutic potential of Naja naja atra venom in a rat model of diabetic nephropathy (2012) Biomed. Environ. Sci., 25, pp. 630-638; Hakim, A.E.E.L., Gamal-Eldeen, A.M., Shahein, Y.E., Mansour, N.M., Wahby, A.F., Abouelella, A.M., Purification and characterization of a cytotoxic neurotoxin-like protein from Naja haje haje venom that induces mitochondrial apoptosis pathway (2011) Arch. Toxicol., 85, pp. 941-952; Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77; Factor, V.M., Kiss, A., Woitach, J.T., Wirth, P.J., Thorgeirsson, S.S., Disruption of redox homeostasis in the transforming growth factoralpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis (1998) J. Biol. Chem., 273, pp. 15846-15853; Fletcher, J.E., Jiang, M.S., Gong, Q.H., Yudkowsky, M.L., Wieland, S.J., Effects of a cardiotoxin from Naja naja kaouthia venom on skeletal muscle: Involvement of calcium-induced calcium release, sodium ion currents and phospholipases A2 and C (1991) Toxicon, 29, pp. 1489-1500; Fox, J.W., Serrano, S.M., Exploring snake venom proteomes: Multifaceted analyses for complex toxin mixtures (2008) Proteomics, 8, pp. 909-920; Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Anal. Biochem., 126, pp. 131-138; Gutierrez, J.M., Theakston, R.D., Warrell, D.A., Confronting the neglected problem of snake bite envenoming: The need for a global partnership (2006) PLoS Med., 3, p. e150; Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation (1974) J. Biol. Chem., 249, pp. 7130-7139; Haffor, A.S., Al-Sadoon, M.K., Increased antioxidant potential and decreased free radical production in response to mild injection of crude venom, Cerastes cerastes gasperetti (2008) Toxicol. Mech. Methods, 18, pp. 11-16; Joubert, F.J., Taljaard, N., Naja haje haje (Egyptian cobra) Venom (1978) Eur. J.Biochem., 90, pp. 359-367; Kerjaschki, D., Sharkey, D.J., Farquhar, M.G., Identification and characterization of podocalyxin - The major sialoprotein of the renal glomerular epithelial cell (1984) J. Cell Biol., 98, pp. 1591-1596; Kerns, R.T., Kini, R.M., Stefansson, S., Evans, H.J., Targeting of venom phospholipases: The strongly anticoagulant phospholipase A2 from Naja nigricollis venom binds to coagulation factor Xa to inhibit the prothrombinase complex (1999) Arch. Biochem. Biophys., 369, pp. 107-113; Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275; Maria, D.A., Vassao, R.C., Ruiz, I.R., Haematopoietic effects induced in mice by the snake venom toxin jararhagin (2003) Toxicon, 42, pp. 579-585; Markland, F.S., Snake venoms and the hemostatic system (1998) Toxicon, 36, pp. 1749-1800; Maxwell, S.A., Davis, G.E., Differential gene expression in p53-mediated apoptosis-resistant vs apoptosis-sensitive tumor cell lines (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 13009-13014; Meier, J., Theakston, R.D., Approximate LD50 determinations of snake venoms using eight to ten experimental animals (1986) Toxicon, 24, pp. 395-401; Miao, J.Y., Araki, S., Han, Y.R., Hayashi, H., Involvement of gene expressions in apoptosis of vascular endothelial cells induced by rattlesnake venom (1999) Cell Res., 9, pp. 237-242; Mukherjee, A.K., Ghosal, S.K., Maity, C., Effect of oral supplementation of vitamin e on the hemolysis and erythrocyte phospholipid-splitting action of cobra and viper venoms (1998) Toxicon, 36, pp. 657-664; Mukherjee, A.K., Maity, C.R., The composition of Naja naja venom samples from three districts of West Bengal, India (1998) Comp. Biochem. Physiol. A Mol. Integr. Physiol., 119, pp. 621-627; Nelson, B.K., Snake envenomation. Incidence, clinical presentation and management (1989) Med. Toxicol. Adv. Drug Exp., 4, pp. 17-31; Nishikimi, M., Appaji, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochem. Biophys. Res. Commun., 46, pp. 849-854; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Anal. Biochem., 95, pp. 351-358; Omran, M.A., Abdel-Nabi, I.M., Changes in the arterial blood pressure, heart rate and normal ECG parameters of rat after envenomation with Egyptian cobra (Naja haje) venom (1997) Hum. Exp. Toxicol., 16, pp. 327-333; Othman, M.S., Safwat, G., Aboulkhair, M., Abdel Moneim, A.E., The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats (2014) Fd. Chem. Toxicol., 69, pp. 175-181; Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase (1967) J. Lab. Clin. Med., 70, pp. 158-169; Pedrycz, A., Czerny, K., Immunohistochemical study of proteins linked to apoptosis in rat fetal kidney cells following prepregnancy adriamycin administration in the mother (2008) Acta Histochem., 110, pp. 519-523; Rahmy, T.R., Action of cobra venom on the renal cortical tissues: Electron microscopic studies (2001) J. Venom. Anim. Toxins, 7, pp. 85-112; Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling (2012) Cell Signal, 24, pp. 981-990; Rowan, E.G., Harvey, A.L., Menez, A., Neuromuscular effects of nigexine, a basic phospholipase A2 from Naja nigricollis venom (1991) Toxicon, 29, pp. 371-374; Sant, S.M., Purandare, N.M., Autopsy study of cases of snake bite with special reference to the renal lesions (1972) J. Postgrad. Med., 18, pp. 181-188; Schneemann, M., Cathomas, R., Laidlaw, S.T., Nahas, A.M.E.L., Theakston, R.D., Warrell, D.A., Life-threatening envenoming by the Saharan horned viper (Cerastes cerastes) causing micro-angiopathic haemolysis, coagulopathy and acute renal failure: Clinical cases and review (2004) Quart J. Med., 97, pp. 717-727; Sri Balasubashini, M., Karthigayan, S., Somasundaram, S.T., Balasubramanian, T., Viswanathan, V., Raveendran, P., Menon, V.P., Fish venom (Pterios volitans) peptide reduces tumor burden and ameliorates oxidative stress in Ehrlich's ascites carcinoma xenografted mice (2006) Bioorganic. Med. Chem. Lett., 16, pp. 6219-6225; Stefansson, S., Kini, R.M., Evans, H.J., The basic phospholipase A2 from Naja nigricollis venom inhibits the prothrombinase complex by a novel nonenzymatic mechanism (1990) Biochemistry, 29, pp. 7742-7746; Stow, J.L., Sawada, H., Farquhar, M.G., Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus (1985) Proc. Natl. Acad.Sci. USA, 82, pp. 3296-3300; Tohamy, A.A., Mohamed, A.F., Abdel Moneim, A.E., Diab, M.S.M., Biological effects of Naja haje crude venom on the hepatic and renal tissues of mice (2014) J. King Saud Univ. Sci., 26, pp. 205-212; Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., Free radicals and antioxidants in normal physiological functions and human disease (2007) Int. J. Biochem. Cell. Biol., 39, pp. 44-84; Willinger, C.C., Thamaree, S., Schramek, H., Gstraunthaler, G., Pfaller, W., In vitro nephrotoxicity of Russell's viper venom (1995) Kidney Int., 47, pp. 518-528; Zhang, L., Wu, W.T., Isolation and characterization of ACTX-6: A cytotoxic L-amino acid oxidase from Agkistrodon acutus snake venom (2008) Nat. Prod. Res., 22, pp. 554-563 | |
dcterms.source | Scopus |