GENERALIZED LAGUERRE-GAUSS-RADAU SCHEME FOR FIRST ORDER HYPERBOLIC EQUATIONS ON SEMI-INFINITE DOMAINS

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorBhrawy, A. H.
dc.contributor.authorHafez, R. M.
dc.contributor.authorAlzahrani, E. O.
dc.contributor.authorBaleanu, D.
dc.date.accessioned2019-12-16T07:47:21Z
dc.date.available2019-12-16T07:47:21Z
dc.date.issued2015
dc.descriptionAccession Number: WOS:000361859100004en_US
dc.description.abstractIn this article, we develop a numerical approximation for first-order hyperbolic equations on semi-infinite domains by using a spectral collocation scheme. First, we propose the generalized Laguerre-Gauss-Radau collocation scheme for both spatial and temporal discretizations. This in turn reduces the problem to the obtaining of a system of algebraic equations. Second, we use a Newton iteration technique to solve it. Finally, the obtained results are compared with the exact solutions, highlighting the performance of the proposed numerical methoden_US
dc.description.sponsorshipDeanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah 14-135-35-RGen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=11500153309&tip=sid&clean=0
dc.identifier.citationCited References in Web of Science Core Collection: 60en_US
dc.identifier.issn1221-146X
dc.identifier.urihttps://cutt.ly/nrqiJMQ
dc.language.isoenen_US
dc.publisherEDITURA ACAD ROMANEen_US
dc.relation.ispartofseriesROMANIAN JOURNAL OF PHYSICS;Volume: 60 Issue: 7-8 Pages: 918-934
dc.relation.urihttps://cutt.ly/UrqiHMo
dc.subjectUniversity for First-order hyperbolic equationsen_US
dc.subjectTwo-dimensional hyperbolic equationsen_US
dc.subjectCollocation methoden_US
dc.subjectGeneralized Laguerre-Gauss-Radau quadratureen_US
dc.titleGENERALIZED LAGUERRE-GAUSS-RADAU SCHEME FOR FIRST ORDER HYPERBOLIC EQUATIONS ON SEMI-INFINITE DOMAINSen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: