GENERALIZED LAGUERRE-GAUSS-RADAU SCHEME FOR FIRST ORDER HYPERBOLIC EQUATIONS ON SEMI-INFINITE DOMAINS
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Bhrawy, A. H. | |
dc.contributor.author | Hafez, R. M. | |
dc.contributor.author | Alzahrani, E. O. | |
dc.contributor.author | Baleanu, D. | |
dc.date.accessioned | 2019-12-16T07:47:21Z | |
dc.date.available | 2019-12-16T07:47:21Z | |
dc.date.issued | 2015 | |
dc.description | Accession Number: WOS:000361859100004 | en_US |
dc.description.abstract | In this article, we develop a numerical approximation for first-order hyperbolic equations on semi-infinite domains by using a spectral collocation scheme. First, we propose the generalized Laguerre-Gauss-Radau collocation scheme for both spatial and temporal discretizations. This in turn reduces the problem to the obtaining of a system of algebraic equations. Second, we use a Newton iteration technique to solve it. Finally, the obtained results are compared with the exact solutions, highlighting the performance of the proposed numerical method | en_US |
dc.description.sponsorship | Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah 14-135-35-RG | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=11500153309&tip=sid&clean=0 | |
dc.identifier.citation | Cited References in Web of Science Core Collection: 60 | en_US |
dc.identifier.issn | 1221-146X | |
dc.identifier.uri | https://cutt.ly/nrqiJMQ | |
dc.language.iso | en | en_US |
dc.publisher | EDITURA ACAD ROMANE | en_US |
dc.relation.ispartofseries | ROMANIAN JOURNAL OF PHYSICS;Volume: 60 Issue: 7-8 Pages: 918-934 | |
dc.relation.uri | https://cutt.ly/UrqiHMo | |
dc.subject | University for First-order hyperbolic equations | en_US |
dc.subject | Two-dimensional hyperbolic equations | en_US |
dc.subject | Collocation method | en_US |
dc.subject | Generalized Laguerre-Gauss-Radau quadrature | en_US |
dc.title | GENERALIZED LAGUERRE-GAUSS-RADAU SCHEME FOR FIRST ORDER HYPERBOLIC EQUATIONS ON SEMI-INFINITE DOMAINS | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: