Robust Kalman filtering for discrete state-delay systems
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Mahmoud M.S. | |
dc.contributor.author | Xie L. | |
dc.contributor.author | Soh Y.C. | |
dc.contributor.other | Department of Electrical and Computer Engineering | |
dc.contributor.other | Kuwait University | |
dc.contributor.other | Kuwait; Department of Engineering | |
dc.contributor.other | MSA University | |
dc.contributor.other | Amer St. | |
dc.contributor.other | Mesaha Square | |
dc.contributor.other | Dokki | |
dc.contributor.other | Egypt; School of Electrical and Electronic Engineering | |
dc.contributor.other | Nanyang Technological University | |
dc.contributor.other | Nanyang Avenue | |
dc.contributor.other | Singapore 639798 | |
dc.contributor.other | Singapore | |
dc.date.accessioned | 2020-01-25T19:58:37Z | |
dc.date.available | 2020-01-25T19:58:37Z | |
dc.date.issued | 2000 | |
dc.description | Scopus | |
dc.description.abstract | A robust estimator design methodology has been developed for a class of linear uncertain discrete-time systems. It extends the Kalman filter to the case in which the underlying system is subject to norm-bounded uncertainties and constant state delay. A linear state estimator is constructed via a systematic procedure such that the estimation error covariance is guaranteed to lie within a certain bound for all admissible uncertainties. The solution is given in terms of two Riccati equations involving scaling parameters. A numerical example is provided to illustrate the theory. | en_US |
dc.identifier.doi | https://doi.org/10.1049/ip-cta:20000749 | |
dc.identifier.doi | PubMed ID : | |
dc.identifier.issn | 13502379 | |
dc.identifier.other | https://doi.org/10.1049/ip-cta:20000749 | |
dc.identifier.other | PubMed ID : | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/903454 | |
dc.language.iso | English | en_US |
dc.publisher | IEE, Stevenage, United Kingdom | en_US |
dc.relation.ispartofseries | IEE Proceedings: Control Theory and Applications | |
dc.relation.ispartofseries | 147 | |
dc.subject | Discrete time control systems | en_US |
dc.subject | Linear control systems | en_US |
dc.subject | Riccati equations | en_US |
dc.subject | Robustness (control systems) | en_US |
dc.subject | State estimation | en_US |
dc.subject | Uncertain systems | en_US |
dc.subject | Discrete state delay systems | en_US |
dc.subject | Kalman filtering | en_US |
dc.title | Robust Kalman filtering for discrete state-delay systems | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Anderson, B.D.O., Moore, J.B., (1979) Optimal Filtering, , Prentice Hall, New York; Petersen, I.R., A Stabilization algorithm for a class of uncertain linear systems (1987) Syst. Control Lett., 8, pp. 351-357; Bernstein, D.S., Haddad, W.M., Steady-state Kalman filtering with an H? error bound (1991) Syst. Control Lett., 16, pp. 309-317; Xie, L., De Souza, C.E., Wang, Y., Robust filtering for a class of discrete-time uncertain nonlinear systems: An H? approach (1996) Int. J. Robust Nonlinear Control, 6, pp. 297-312; Xie, L., De Souza, C.E., Fu, M., H? estimation for discrete-time linear uncertain systems (1991) Int. J. Robust Nonlinear Control, 1, pp. 111-123; Mahmoud, M.S., Guaranteed stabilization of interconnected discrete-time systems (1995) Int. J. Syst. Sci., 26, pp. 337-358; Mahmoud, M.S., Design of stabilizing controllers for uncertain discrete-time systems with state-delay (1995) Syst. Anal. Model. Simul. J., 21, pp. 13-27; Mahmoud, M.S., Output feedback stabilization of uncertain systems with state delay (1994) Analysis and Synthesis Techniques in Complex Control and Dynamic Systems, 63, pp. 197-257. , LEONDES, C.T. (Ed.); Dugard, L., Verriest, E.I., (1997) Stability and Control of Time-delay Systems, , Springer-Verlag, London; Mahmoud, M.S., (1999) Robust Control and Filtering for Time-delay Systems, , Marcel-Dekker, New York; Fattoh, A., Sename, O., Dion, J.M., An unknown input observer design for linear time-delay systems (1999) Proceedings of 38th CDC, pp. 4222-4226; De Souza, C.E., Fu, M., Xie, L., H? analysis and synthesis of discrete-time systems with time-varying uncertainty (1993) IEEE Trans., AC-38, pp. 459-462; Kolomanovskii, V., Myshkis, A., (1986) Applied Theory of Functional Differential Equations, , Kluwer Academic, New York | |
dcterms.source | Scopus |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- avatar_scholar_256.png
- Size:
- 6.31 KB
- Format:
- Portable Network Graphics
- Description: