Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHafez, Ramy M.
dc.date.accessioned2019-11-20T12:10:26Z
dc.date.available2019-11-20T12:10:26Z
dc.date.issued2018
dc.descriptionAccession Number: WOS:000443034900073en_US
dc.description.abstractThe telegraph equation is one of the important equations of mathematical physics. In this work, a spectral collocation scheme is proposed for the numerical solutions of one- and two-dimensional linear telegraph equations and telegraph equations with nonlinear forcing term. The homogeneous initial and boundary conditions are satisfied exactly by expanding the unknown variable using polynomial bases of functions which are built upon the Jacobi polynomials. The suggested scheme is successfully developed for the aforementioned problem with nonhomogeneous data. Extensive numerical experiments are presented to verify the efficiency of the proposed scheme.en_US
dc.description.sponsorshipSPRINGER HEIDELBERG,en_US
dc.identifier.doihttps://doi.org/10.1007/s40314-018-0635-1
dc.identifier.issn0101-8205
dc.identifier.otherhttps://doi.org/10.1007/s40314-018-0635-1
dc.identifier.urihttps://link.springer.com/article/10.1007/s40314-018-0635-1
dc.language.isoenen_US
dc.publisherSPRINGER HEIDELBERGen_US
dc.relation.ispartofseriesCOMPUTATIONAL & APPLIED MATHEMATICS;Volume: 37 Issue: 4 Pages: 5253-5273
dc.relation.urihttps://cutt.ly/YeZELQD
dc.subjectUniversity of Telegraph equationsen_US
dc.subjectJacobi polynomialsen_US
dc.subjectCollocation methoden_US
dc.subjectSCHEMESen_US
dc.subjectALGORITHMen_US
dc.subjectOPERATIONAL MATRIXen_US
dc.subjectFRACTIONAL SCHRODINGER-EQUATIONSen_US
dc.titleNumerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation methoden_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: