Control of uncertain state-delay systems: Guaranteed cost approach

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorMahmoud M.S.
dc.contributor.otherDepartment of Engineering
dc.contributor.otherMSA University
dc.contributor.otherAmer Street
dc.contributor.otherMesaha Square
dc.contributor.otherDokki
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:37Z
dc.date.available2020-01-25T19:58:37Z
dc.date.issued2001
dc.descriptionScopus
dc.description.abstractIn this paper, we address the problems of robust performance analysis and control synthesis for a class of linear continuous-time systems with parameter uncertainty and unknown state-delay. The parameter uncertainty is real time-varying norm-bounded and the state-delay is a constant within a prescribed interval. For the robust performance analysis problem, we adopt appropriate notions of robust stability independent of delay and delay dependent. In both cases, we show that the adopted notion guarantees an upper bound on a linear quadratic cost function. For the synthesis problem, we show that a robust state-feedback controller can be constructed to render the closed-loop system robustly stable while guaranteeing a prescribed level of performance. The developed results are expressed in terms of algebraic Riccati or linear matrix inequalities.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=23150&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1093/imamci/18.1.109
dc.identifier.issn2650754
dc.identifier.otherhttps://doi.org/10.1093/imamci/18.1.109
dc.identifier.uriControl of uncertain state-delay systems: guaranteed cost approach
dc.language.isoEnglishen_US
dc.publisherOxford Univ Press, Oxford, United Kingdomen_US
dc.relation.ispartofseriesIMA Journal of Mathematical Control and Information
dc.relation.ispartofseries18
dc.subjectClosed loop control systemsen_US
dc.subjectFeedback controlen_US
dc.subjectLinear control systemsen_US
dc.subjectMatrix algebraen_US
dc.subjectParameter estimationen_US
dc.subjectRiccati equationsen_US
dc.subjectRobustness (control systems)en_US
dc.subjectUncertain systemsen_US
dc.subjectLinear matrix inequalitiesen_US
dc.subjectDelay control systemsen_US
dc.titleControl of uncertain state-delay systems: Guaranteed cost approachen_US
dc.typeArticleen_US
dcterms.isReferencedByZhou, K., (1998) Essentials of Robust Control, , New York: Prentice-Hall; Malek-Zavarei, M., Jamshidi, M., (1987) Time-delay Systems: Analysis. Optimization and Applications, , Amesterdam: North-Holland; Kolomanovskii, V., Myshkis, A., (1986) Applied Theory of Functional Differential Equations, , New York: Kluwer; Mahmoud, M.S., Output feedback stabilization of uncertain systems with state delay (1994) Analysis and Synthesis Techniques in Complex Control and Dynamic Systems, Advances in Theory and Applications, 63, pp. 197-257. , C. T. Leondes ed; Ge, J.H., Frank, P.M., Lin, C.F., Robust H? state feedback control for linear systems with state-delay and parameter uncertainty (1996) Automatica, 32, pp. 1183-1185; Li, X., De Souza, C.E., Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach (1997) IEEE Trans. Automatic Control, 42, pp. 1144-1148; Mahmoud, M.S., Stabilizing control of systems with uncertain parameters and state-delay (1994) J. University of Kuwait (Science), 21, pp. 185-202; Mahmoud, M.S., Dynamic control of systems with variable state-delays (1996) Int. J. Robust and Nonlinear Control, 6, pp. 123-146; Su, T.J., Haung, C.G., Robust stability of delay dependence of linear uncertain systems (1992) IEEE Trans. Automatic Control AC, 37, pp. 1656-1659; Moheimani, S.O.R., Petersen, I.R., Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems (1997) Proc. IEE, Part D, 144, pp. 183-188; Xle, L., Output feedback H? control of systems with parameter uncertainty (1996) Int. J. Control, 63, pp. 741-750; Petersen, I.R., Mcfarlane, D.C., Optimal guaranteed cost control and filtering for uncertain linear systems (1994) IEEE Trans. Automatic Control, 39, pp. 1971-1977; Petersen, I.R., Anderson, B.D.O., Jonckheere, E.A., A first principle solution to the non-singular H? control problem (1991) Int. J. Robust and Nonlinear Control, 1, pp. 171-185
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: