Motion in Kaluza-Klein type theories

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorKahil M.E.
dc.contributor.otherMathematics Department
dc.contributor.otherModern Sciences and Arts University
dc.contributor.otherGiza
dc.contributor.otherEgypt; Mathematics Department
dc.contributor.otherAmerican University in Cairo
dc.contributor.otherCairo
dc.contributor.otherEgypt
dc.date.accessioned2020-01-25T19:58:35Z
dc.date.available2020-01-25T19:58:35Z
dc.date.issued2006
dc.descriptionScopus
dc.description.abstractPath and path deviation equations for charged, spinning and spinning charged objects in different versions of Kaluza-Klein (KK) theory using a modified Bazanski Lagrangian have been derived. The significance of motion in five dimensions, especially for a charged spinning object, has been examined. We have also extended the modified Bazanski approach to derive the path and path deviation equations of a test particle in a version of non-symmetric KK theory. 2006 American Institute of Physics.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=28544&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1063/1.2196749
dc.identifier.issn222488
dc.identifier.otherhttps://doi.org/10.1063/1.2196749
dc.identifier.urihttps://cutt.ly/vrLtLJJ
dc.language.isoEnglishen_US
dc.relation.ispartofseriesJournal of Mathematical Physics
dc.relation.ispartofseries47
dc.titleMotion in Kaluza-Klein type theoriesen_US
dc.typeArticleen_US
dcterms.isReferencedByCollins, P., Martin, A., Squires, E., (1989) Particle Physics and Cosmology, , Wiley, New York; Gabadaze, G., Summer School on Astrophysics and Cosmology, , ICTP, Trieste, Italy; Overduin, J.M., Wesson, P.S., (1997) Phys. Rep., 283, p. 303; Dick, R., (2001) Class. Quantum Grav., 18, p. 1; Ponce De Leon, J., (2001) Phys. Lett. B, 523, p. 311. , gr-qc/0110063; Ponce De Leon, J., (2003), gr-qc/0310078; Liko, T., Overduin, J.M., Wesson, P.S., (2005), gr-qc/0311054; Kalinowski, M.W., (1989) Non-Symmetric Field Theory and Its Applications, , Institute of Theoretical Physics, Warsow University; Bazanski, S.L., (1989) J. Math. Phys., 30, p. 1018; Wanas, M.I., Kahil, M.E., (1999) Gen. Relativ. Gravit., 31, p. 1921; Wanas, M.I., Kahil, M.E., gr-qc/9912007; Wanas, M.I., Melek, M., Kahil, M.E., (1995) Astrophys. Space Sci., 228, p. 273; Wanas, M.I., Melek, M., Kahil, M.E., gr-qc/0207113; Sen, D.K., (1968) Fields and/or Particles, , Ryerson, Toronto; Ravndal, F., (1980) Phys. Rev. D, 21, p. 2823; Dixon, W.G., (1970) Proc. R. Soc. London, Ser. A, 314, p. 499; Kerner, R., Martin, J., Mignemi, S., Van Holten, J.-W., (2003) Phys. Rev. D, 63, p. 027502; Nieto, J.A., Saucedo, J., Villanueva, V.M., (2003) Phys. Lett. A, 312, p. 175; Nieto, J.A., Saucedo, J., Villanueva, V.M., hep-th/0303123; Papapetrou, A., (1951) Proc. R. Soc. London, Ser. A, 209, p. 248; Lega?, J., Moffat, J.W., (1996) Gen. Relativ. Gravit., 26, p. 1221; Buchner, K., Kahil, M.E., ; Kalinowski, M.W., (1982) Phys. Rev. D, 26, p. 3419; Moffat, J.W., (1979) Phys. Rev. D, 19, p. 3554; Einstein, A., (1955) The Meaning of Relativity, , Princeton University Press, Princeton, NJ; Durrer, R., Kocian, P., (2004) Class. Quantum Grav., 21, p. 2127; Dahia, E., Monte, M., Romaro, C., (2003) Mod. Phys. Lett. A, 18, p. 1773. , 0217-7323; Dahia, E., Monte, M., Romaro, C., Mod. Phys. Lett. A, , gr-qc/0303044; Wesson, P., (2004) Gen. Relativ. Gravit., 36, p. 451; Ponce De Leon, J., (2002) Gravitation Cosmol., 8, p. 272. , gr-qc/0104008; Seahra, S., (2002) Phys. Rev. D, 65, p. 124004. , gr-qc/0204032; Liu, H., Mashhoon, B., (2000) Phys. Lett. A, 272, p. 26. , 0375-9601 10.1016/S0375-9601(00)00407-2; Liu, H., Mashhoon, B., Phys. Lett. A, , gr-qc/0005079; Liu, H., Wesson, P.S., (1996) Class. Quantum Grav., 13, p. 2311
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: