Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHafez, R. M.
dc.contributor.authorYoussri, Y. H.
dc.date.accessioned2019-11-05T15:01:20Z
dc.date.available2019-11-05T15:01:20Z
dc.date.issued2018-09
dc.description.abstractWe developed a numerical scheme to solve the variable-order fractional linear subdiffusion and nonlinear reaction-subdiffusion equations using the shifted Jacobi collocation method. Basically, a time-space collocation approximation for temporal and spatial discretizations is employed efficiently to tackle these equations. The convergence and stability analyses of the suggested basis functions are presented in-depth. The validity and efficiency of the proposed method are investigated and verified through numerical examples.en_US
dc.description.sponsorshipSPRINGER HEIDELBERG, TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANYen_US
dc.identifier.citationCited References in Web of Science Core Collection: 48en_US
dc.identifier.doihttps://doi.org/10.1007/s40314-018-0633-3
dc.identifier.issn0101-8205
dc.identifier.otherhttps://doi.org/10.1007/s40314-018-0633-3
dc.identifier.urihttps://link.springer.com/article/10.1007/s40314-018-0633-3
dc.language.isoenen_US
dc.publisherSPRINGER HEIDELBERG, TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANYen_US
dc.relation.ispartofseriesCOMPUTATIONAL & APPLIED MATHEMATICS;Volume: 37 Issue: 4 Pages: 5315-5333
dc.relation.urihttps://cutt.ly/bemHgTG
dc.subjectUniversity for Fractional subdiffusion equationen_US
dc.subjectFractional nonlinear reaction-subdiffusion equationen_US
dc.subjectVariable-order fractional equationsen_US
dc.subjectShifted Jacobi polynomialsen_US
dc.subjectConvergence analysisen_US
dc.subjectBOUNDARY-VALUE-PROBLEMSen_US
dc.subjectINITIAL-VALUE PROBLEMSen_US
dc.subjectDIFFUSION EQUATIONen_US
dc.subjectDIFFERENTIAL-EQUATIONSen_US
dc.subjectANOMALOUS SUBDIFFUSIONen_US
dc.subjectOPERATIONAL MATRIXen_US
dc.subjectNUMERICAL-SOLUTIONen_US
dc.subjectFINITE-DIFFERENCEen_US
dc.subjectPOLYNOMIALSen_US
dc.subjectAPPROXIMATIONen_US
dc.titleJacobi collocation scheme for variable-order fractional reaction-subdiffusion equationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: