On Numerical Methods for Fractional Differential Equation on a Semi-infinite Interval

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorHafez, R. M.
dc.contributor.authorAbdelkawy, M. A
dc.contributor.authorTaha, T. M
dc.contributor.authorBhrawy, A. H
dc.date.accessioned2019-12-28T07:46:34Z
dc.date.available2019-12-28T07:46:34Z
dc.date.issued2015
dc.descriptionAccession Number: WOS:000477805300012en_US
dc.description.abstractChapter 11 is devoted to numerical solutions of fractional differential equations (FDEs) on a semi-infinite interval. This chapter presents a broad discussion of spectral techniques based on operational matrices of fractional derivatives and integration methods for solving several kinds of linear and nonlinear FDEs. We present the operational matrices of fractional derivatives and integrals for some orthogonal polynomials/functions on a semi-infinite interval, and use them together with different spectral techniques for solving the aforementioned equations on a semi-infinite interval. Numerous examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on a semi-infinite interval.en_US
dc.identifier.isbn978-3-11-047208-0
dc.identifier.urihttps://t.ly/wnDmN
dc.language.isoen_USen_US
dc.publisherDE GRUYTER OPEN LTDen_US
dc.relation.ispartofseriesFRACTIONAL DYNAMICS;191-218
dc.relation.urihttps://t.ly/q1bRE
dc.subjectUniversity for APPROXIMATIONen_US
dc.subjectOPERATIONAL MATRIXen_US
dc.subjectBOUNDARY-VALUE-PROBLEMSen_US
dc.subjectSPECTRAL COLLOCATION METHODen_US
dc.subjectcollocation methoden_US
dc.subjectTau methoden_US
dc.subjectGeneralized Laguerre polynomialsen_US
dc.subjectoperational matricesen_US
dc.subjectfractional-order generalized Laguerre orthogonal functionsen_US
dc.subjectMulti-term FDEsen_US
dc.titleOn Numerical Methods for Fractional Differential Equation on a Semi-infinite Intervalen_US
dc.typeBook chapteren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: