Stability of Stellar Systems Orbiting SgrA

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorE. Kahil, Magd
dc.date.accessioned2020-01-18T08:28:21Z
dc.date.available2020-01-18T08:28:21Z
dc.date.issued2015
dc.descriptionMSA Google Scholar
dc.description.abstractPath equations of different orbiting objects in the presence of very strong gravitational fields are essential to examine the impact of its gravitational effect on the stability of each system. Implementing an analogous method, used to examine the stability of planetary systems by solving the geodesic deviation equations to obtain a finite value of the magnitude of its corresponding deviation vectors. Thus, in order to know whether a system is stable or not, the solution of corresponding deviation equations may give an indication about the status of the stability for orbiting systems.Accordingly, two questions must be addressed based on the status of stability of stellar objects orbiting super-massive black holes in the galactic center. 1. Would the deviation equations play the same relevant role of orbiting planetary systems for massive spinning objects such as neutron stars or black holes? 2. What type of field theory which describes such a strong gravitational field ?en_US
dc.description.sponsorshiparXiv preprint arXiv:1511.02424en_US
dc.identifier.citationHan, Wen-Biao (2014) Astrophysics and Astronomy 14, 1415 Iorio, L. (2011) Phys. Rev. D84,124001. 10 Angelil, R. and Saha, P. (2014) MNRS,444(2), 3780. Meyer et al. (2012) Science 125506. Wanas, M.I. and Bakry, M.A. (2008) Proc. MGXI part C, 2131. Wanas, M.I. and Bakry, M.A. (1995), Astrophys. Space Sci. 228, 239. Wanas, M.I. (1986) Astrophys. Space Sci. 127, 21. Heydrai-Fard, Mohseni, M. and Sepanigi, H.R. (2005) Physics letters B, 626, 230. Mohseni, M. (2010) Gen. Rel. Grav. 42, 2477. Verzub, L. (2015) Space-time Relativity and Gravitation, Lamberg Acadamic Publishing. Bini, D. and Geralico, A. (2014) Phys Rev.,D84,104012. Bazanski, S.L. (1989) J. Math. Phys., 30, 1018. Dixon, W. G. (1970) Proc. R. Soc. London, Ser. A 314, 499 Di Bari, Maria and Cipriani, P. (2000) Chaotic Universe, 444. Papapetrou, A. (1951), Proceedings of Royal Society London A 209 , 248 Kahil, M.E. (2006), J. Math. Physics 47,052501. Rosen, N. (1973) Gen. Relativ. and Gravit., 4, 435. Verozub, L. (2008) Annalen der Physik, 27, 28.en_US
dc.identifier.urihttps://arxiv.org/pdf/1511.02424.pdf
dc.language.isoenen_US
dc.publisherarXiv preprint arXiv:1511.02424en_US
dc.subjectUniversity of Stellar Systems Orbiting; bimetric theory - Path and Path deviation equations; Orbiting particlesen_US
dc.titleStability of Stellar Systems Orbiting SgrAen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Faculty Of Engineering Research Paper
Loading...
Thumbnail Image
Name:
1511.02424.pdf
Size:
101.87 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: