On Generalized Jacobi-Bernstein Basis Transformation: Application of Multidegree Reduction of Bezier Curves and Surfaces

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorDoha, E. H.
dc.contributor.authorBhrawy, A. H.
dc.contributor.authorSaker, M. A.
dc.date.accessioned2019-11-20T11:53:18Z
dc.date.available2019-11-20T11:53:18Z
dc.date.issued2014
dc.descriptionAccession Number: WOS:000344473500010en_US
dc.description.abstractThis paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect least-square performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for least-square approximation of Bezier curves and surfaces. Application to multidegree reduction (MDR) of Bezier curves and surfaces in computer aided geometric design (CAGD) is given.en_US
dc.description.sponsorshipASMEen_US
dc.identifier.doihttps://doi.org/10.1115/1.4028633
dc.identifier.issn1530-9827
dc.identifier.otherhttps://doi.org/10.1115/1.4028633
dc.identifier.urihttps://cutt.ly/meZElEd
dc.language.isoenen_US
dc.publisherASMEen_US
dc.relation.ispartofseriesJOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING;Volume: 14 Issue: 4
dc.relation.urihttps://cutt.ly/TeZEzA8
dc.subjectUniversity of MULTI-DEGREE REDUCTIONen_US
dc.subjectBernstein polynomialsen_US
dc.subjectbasis transformationen_US
dc.subjectgeneralized Jacobi polynomialsen_US
dc.subjectNUMERICAL-SOLUTIONen_US
dc.titleOn Generalized Jacobi-Bernstein Basis Transformation: Application of Multidegree Reduction of Bezier Curves and Surfacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: