Surfactant modulated interaction of hydrophobically modified ethoxylated urethane (HEUR) polymers with impenetrable surfaces

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorIbrahim M.S.
dc.contributor.authorRogers S.
dc.contributor.authorMahmoudy N.
dc.contributor.authorMurray M.
dc.contributor.authorSzczygiel A.
dc.contributor.authorGreen B.
dc.contributor.authorAlexander B.D.
dc.contributor.authorGriffiths P.C.
dc.contributor.otherFaculty of Engineering and Science
dc.contributor.otherUniversity of Greenwich
dc.contributor.otherMedway Campus
dc.contributor.otherChatham Maritime
dc.contributor.otherKent ME4 4TB
dc.contributor.otherUnited Kingdom; Pharmaceutics Department
dc.contributor.otherFaculty of Pharmacy
dc.contributor.otherModern Science and Arts University
dc.contributor.other26 July Mehwar Road Intersection with Wahat Road
dc.contributor.otherCairo
dc.contributor.otherEgypt; Science and Technology Facilities Council
dc.contributor.otherISIS Facility
dc.contributor.otherRutherford Appleton Laboratory
dc.contributor.otherDidcot
dc.contributor.otherOxfordshire OX11 OQX
dc.contributor.otherUnited Kingdom; AkzoNobel
dc.contributor.otherWexham Road
dc.contributor.otherSlough
dc.contributor.otherBerkshire SL2 5DS
dc.contributor.otherUnited Kingdom
dc.date.accessioned2020-01-09T20:40:39Z
dc.date.available2020-01-09T20:40:39Z
dc.date.issued2019
dc.descriptionScopus
dc.description.abstractHypothesis: The presence of surfactant modulates the surface-chemistry-specific interaction of hard colloidal particles (latex) with HEUR polymers, principally through introducing a preferential solution interaction rather than a competitive surface interaction; addition of surfactant leads to a preponderance of polymer/surfactant solution complexes rather than surface-bound complexes. Experiments: A range of model formulations comprising a hexyl end-capped urethane polymer (C6-L-(EO100-L)9-C6), sodium dodecylsulfate (SDS) and a series of polystyrene-butylacrylate latices (PS-BA-L) have been characterised in terms of rheology, particle surface area (solvent relaxation NMR), polymer conformation (small-angle neutron scattering) and solution composition to build up a detailed picture of the distribution of the HEUR in the presence of both surfactant and latex. Findings: There is very weak adsorption of C6-L-(EO100-L)9-C6 to only the most hydrophobic latex surface studied, an adsorption that is further weakened by the addition of low levels of surfactant. Macroscopic changes in the hydrophobic latex system may be interpreted in terms of bridging flocculation at low polymer concentrations. No adsorption of C6-L-(EO100-L)9-C6 is observed in the case of hydrophilic surfaces. In most cases, the observed behaviour of the ternary system (polymer/surfactant/particle) is highly reminiscent of the binary (polymer/surfactant) system at the appropriate composition, suggesting that the polymer/surfactant solution interaction is the dominant one. 2018en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=26950&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1016/j.jcis.2018.12.059
dc.identifier.doiPubMed ID : 30579216
dc.identifier.issn219797
dc.identifier.otherhttps://doi.org/10.1016/j.jcis.2018.12.059
dc.identifier.otherPubMed ID : 30579216
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0021979718315005
dc.language.isoEnglishen_US
dc.publisherAcademic Press Inc.en_US
dc.relation.ispartofseriesJournal of Colloid and Interface Science
dc.relation.ispartofseries539
dc.subjectHEURen_US
dc.subjectLatexen_US
dc.subjectPGSE-NMRen_US
dc.subjectRheologyen_US
dc.subjectSANSen_US
dc.subjectSDSen_US
dc.subjectSolvent relaxation NMRen_US
dc.subjectAdsorptionen_US
dc.subjectElasticityen_US
dc.subjectEstersen_US
dc.subjectHydrophobicityen_US
dc.subjectLatexesen_US
dc.subjectNeutron scatteringen_US
dc.subjectRheologyen_US
dc.subjectSodium dodecyl sulfateen_US
dc.subjectSolsen_US
dc.subjectSurface chemistryen_US
dc.subjectBridging flocculationen_US
dc.subjectHEURen_US
dc.subjectHydrophobically modified ethoxylated urethanesen_US
dc.subjectImpenetrable surfacesen_US
dc.subjectPgse nmren_US
dc.subjectPolymer concentrationsen_US
dc.subjectSANSen_US
dc.subjectSolvent relaxationen_US
dc.subjectPolymersen_US
dc.subjectacrylic acid butyl esteren_US
dc.subjectdodecyl sulfate sodiumen_US
dc.subjecthydrophobically modified ethoxylated urethaneen_US
dc.subjectlatexen_US
dc.subjectpolystyreneen_US
dc.subjectpolyurethanen_US
dc.subjectsurfactanten_US
dc.subjectunclassified drugen_US
dc.subjectadsorptionen_US
dc.subjectArticleen_US
dc.subjectchemical compositionen_US
dc.subjectchemical interactionen_US
dc.subjectchemical modificationen_US
dc.subjectconcentration (parameters)en_US
dc.subjectconformationen_US
dc.subjectflocculationen_US
dc.subjecthydrophobicityen_US
dc.subjectmodelen_US
dc.subjectneutron scatteringen_US
dc.subjectpriority journalen_US
dc.subjectsurface propertyen_US
dc.titleSurfactant modulated interaction of hydrophobically modified ethoxylated urethane (HEUR) polymers with impenetrable surfacesen_US
dc.typeArticleen_US
dcterms.isReferencedByHolmberg, K., Handbook of Surface and Colloid Chemistry (2015), Fourth Edition CPR Press Florida, USA; Aulton, M.E., Pharmaceutics-The Science of Dosage from Design (2002), Second Edition Churchill Livingstone New York, USA; Panrat, K., Boonme, P., Taweepreda, W., Pichayakorn, W., Formulations of natural rubber latex as film former for pharmaceutical coating (2012) Procedia Chem., 4, pp. 322-327; Richey, B., Kirk, A.B., Eisenhart, E.K., Fitzwater, S., Hook, J., Interactions of associative thickeners with paint components as studied by the use of a fluorescently labeled model thickener (1991) J. Coat. Thechnol., 63 (798), pp. 31-40; Glass, J.E., Adsorption of hydrophobically-modified, ethoxylated urethane thickeners on latex and titanium dioxide disperse phases (1999) Adv. Colloid Interface Sci., 79 (2), pp. 123-148; Beshah, K., Izmitli, A., Van Dyk, A.K., Rabasco, J.J., Bohling, J., Fitzwater, S.J., Diffusion-weighted PFGNMR study of molecular level interactions of loops and direct bridges of HEURs on latex particles (2013) Macromolecules, 46 (6), pp. 2216-2227; Quadrat, O., Horsky, J., Snuparek, J., Thickening effect of commercial associative thickeners on the latices of copolymers of acrylic monomers carrying hydrophilic reactive groups (2003) J. Dispersion Sci. Technol., 24 (2), pp. 179-184; Ou-yang, H.D., Gao, Z., A pancake-to-brush transition in polymer adsorption (1991) J. Phys. II., 1 (11), pp. 1375-1385; Hulden, M., Hydrophobically modified urethane-ethoxylate (HEUR) associative thickeners 2. Interaction with latex (1994) Colloids Surfaces A Physicochem. Eng. Asp., 88 (2-3), pp. 207-221; Pham, Q.T., Russel, W.B., Lau, W., The effects of adsorbed layers and solution polymer on the viscosity of dispersions containing associative polymers (1998) J. Rheol., 42 (1), pp. 159-176; Santos, F.A., Bell, T.J., Stevenson, A.R., Christensen, D.J., Pfau, M.R., Nghiem, B.Q., Kasprzak, C.R., Fernando, R.H., Syneresis and rheology mechanisms of a latex-HEUR associative thickener system (2017) J. Coatings Technol. Res., 14 (1), pp. 57-67; Chatterjee, T., Nakatani, A.I., Dyk, A.K.V., Shear-dependent interactions in hydrophobically modified ethylene oxide urethane (HEUR) based rheology modifier?latex suspensions: Part 1 Molecular microstructure (2014) Macromolecules, 47 (3), pp. 1155-1174; Beaudoin, E., Lapp, A., Hiorns, R.C., Grassl, B., Franois, J., Neutron scattering of hydrophobically modified poly(ethylene oxide) in aqueous solutions in the presence of latex particles (2002) Polymer, 43 (9), pp. 2677-2689; Pisarcik, M., Bakos, D., Ceppan, M., Interactions of latex spheres and anionic surfactant in hydrophobically modified polymer aqueous solution (1993) Colloids Surf, A Physicochem. Eng. Asp., 81, pp. 161-166; Lauten, R.A., Kjoniksen, A., Nystrom, B., Adsorption and desorption of unmodified and hydrophobically modified ethyl(hydroxyethyl)cellulose on polystyrene latex particles in the presence of ionic surfactants using dynamic light scattering (2000) Langmuir, 16 (10), pp. 4478-4484; Lauten, R.A., Kjoniksen, A., Nystro, B., Colloid polymer interactions and aggregation in aqueous mixtures of polystyrene latex, sodium dodecyl sulfate, and a hydrophobically modified polymer: a dynamic light scattering study (2001) Langmuir, 17 (3), pp. 924-930; Mahli, D.M., Steffenhagen, M.J., Xing, L., Glass, J.E., Surfactant behavior and its influence on the viscosity of associative thickeners solutions, thickened latex dispersions, and waterborne latex coatings (2003) J. Coat Technol., 75 (938), pp. 39-51; Winnik, M.A., Yekta, A., Associative polymers in aqueous solution (1997) Curr. Opin. Colloid Interface Sci., 2 (4), pp. 4234-4236; Alami, E., Almgren, M., Brown, W., Interaction of hydrophobically end-capped poly(ethylene oxide) with nonionic surfactants in aqueous solution. Fluorescence and light scattering studies (1996) Macromolecules, 29 (14), pp. 5026-5035; Zhang, K., Xu, B., Winnik, M.A., Macdonald, P.M., Surfactant interactions with HEUR associating polymers (1996) J. Phys. Chem., 100 (23), pp. 9834-9841; Hulden, M., Hydrophobically modified urethane-ethoxylate (HEUR) associative thickeners 1. Rheology of aqueous solutions and interactions with surfactants (1994) Colloids Surf, A Physicochem. Eng. Asp., 82 (3), pp. 263-277; Ma, Z., Chen, M., Glass, J.E., Adsorption of nonionic surfactants and model HEUR associative thickeners on oligomeric acid-stabilized poly(methyl methacrylate) lattices (1996) Colloids Surf, A Physicochem. Eng. Asp., 112 (2), pp. 163-184; Abrahmsen-Alami, S., Stilbs, P., NMR self-diffusion of associative polymers in aqueous solution: the influence of the hydrocarbon end-chain length on the polymer transport dynamics in single-and two-component mixtures (1997) J. Colloid Interface Sci., 189 (189), pp. 137-143; Claridge, High-Resolution NMR Techniques in Organic Chemistry (2009), Second ELSVIERE Oxford, UK; Heenan, R.K., King, S.M., Turner, D.S., Treadgold, J.R., (2005), http://www.isis.stfc.ac.uk/instruments/sans2d/publications/sans2d-at-isis10323.pdf, SANS2d at the ISIS Second Target Station, 17th Meet Int Collab Adv Neutron Sources 16. Available from: (accessed November 2016); Cooper, C.L., Cosgrove, T., Duijneveldt, J.S., Murray, M., Prescott, S.W., The use of solvent relaxation NMR to study colloidal suspensions (2013) Soft Matter., 9 (30), pp. 7211-7228; Kostansek, E., Using Dispersion/flocculation phase diagrams to visualize interactions of associative polymers, latexes, and surfactants (2003) J Coat Technol., 75 (940), pp. 1-8; Reuvers, A.J., Control of rheology of water-borne paints using associative thickeners (1999) Prog. Org. Coatings, 35, pp. 171-181; Jenkins, R.D., Durali, M., Silebi, C.A., El-Aasser, M.S., Adsorption of model associative polymers on monodisperse polystyrene latex (1992) J. Colloid Interface Sci., 154 (2), pp. 502-521; Uemura, Y., Macdonald, P.M., Associating polymer binding to polystyrene latex (1996) Macromolecules, 29 (1), pp. 63-69; Furusawa, K., Sato, A., Shirai, J., Nashima, T., Depletion flocculation of latex dispersion in ionic micellar systems (2002) J. Colloid Interface Sci., 253, pp. 273-2788; Ibrahim, M.S., Valencony, J., King, S., Murray, M., Szczygiel, A., Alexander, B.D., Griffiths, P.C., Studying the interaction of hydrophobically modified ethoxylated urethane (HEUR) polymers with sodium dodecylsulfate (SDS) in concentrated polymer solutions (2018) J. Colloid Interface Sci., 529, pp. 588-598
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description: