Regression relation for pure quantum states and its implications for efficient computing

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Type

Article

Publisher

American Physical Society

Series Info

Physical review letters;Volume: 110 Issue: 7 Pages: 1-16

Doi

Abstract

We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schroedinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.

Description

MSA Google Scholar

Keywords

University of Pure quantum states

Citation

1 L. Onsager, Phys. Rev. 38, 2265 (1931). 2 G. W. Ford and R. F. O’Connell, Phys. Rev. Lett. 77, 798 (1996). 3 M. Lax, Optics Communications 179, 463 (2000). 4 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951). 5 A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961). 6 B. V. Fine, Phys. Rev. Lett. 79, 4673 (1997). 7 W. Zhang, N. Konstantinidis, K. A. Al-Hassanieh, and V. V. Dobrovitski, J. Phys. Condens. Matter 19, 083202 (2007). 8 F. Verstraete and J. Cirac, cond-mat/0407066 (2004). 9 S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004). 10 U. Schollw¨ock, Rev. Mod. Phys. 77, 259 (2005). 11 G. M. Crosswhite, A. C. Doherty, and G. Vidal, Phys. Rev. B 78, 035116 (2008). 12 J. Gemmer, M. Michel, and G. Mahler, Quantum Thermodynamics (Springer Verlag, Berlin/Heidelberg, 2004). 13 S. Goldstein, J. L. Leibowitz, R. Tumulka, and N. Zanghi, Phys. Rev. Lett. 96, 050403 (2006). 14 S. Popescu, A. J. Short, and A. Winter, Nature Physics 2, 754 (2006). 15 P. Reimann, Phys. Rev. Lett. 99, 160404 (2007). 16 G. A. Alvarez, E. P. Danieli, P. R. Levstein, and H. M. Pastawski, P ´ hys. Rev. Lett. 101, 120503 (2008). 17 C. Bartsch and J. Gemmer, Phys. Rev. Lett. 102, 110403 (2009). 18 C. Bartsch and J. Gemmer, Europhys. Lett. 96, 60008 (2011). 19 M. W. Long, P. Prelovˇsek, S. El Shawish, J. Karadamoglou, and X. Zotos, Phys. Rev. B 68, 235106 (2003). 20 S. R. White, Phys. Rev. Lett. 102, 190601 (2009). 21 B. V. Fine, Phys. Rev. E 80, 051130 (2009). 22 Here we neglect the normalization correction |Ψeq| 2 = 1 + O(1/ √ N) associated with the statis10 tical fluctuations of |ak| 2 . 23 See the supplemental material. 24 F. Bloch, Phys. Rev. 70, 460 (1946). 25 O. F. de Alcantara Bonfim and G. Reiter, Phys. Rev. Lett. 69, 367 (1992).

Full Text link