A NEW CLASS OF PATH EQUATIONS IN AP-GEOMETRY

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorI. Wanas, M.
dc.contributor.authorE. Kahil, M.
dc.date.accessioned2020-01-18T08:36:31Z
dc.date.available2020-01-18T08:36:31Z
dc.date.issued2005
dc.descriptionMSA Google Scholar
dc.description.abstractIn the present work, it is shown that, the application of the Bazanski approach to Lagrangians, written in AP-geometry and including the basic vector of the space, gives rise to a new class of path equations. The general equation representing this class contains four extra terms, whose vanishing reduces this equation to the geodesic one. If the basic vector of the AP-geometry is considered as playing the role of the electromagnetic potential, as done in a previous work, then the second term (of the extra terms) will represent Lorentz force while the fourth term gives a direct effect of the electromagnetic potential on the motion of the charged particle. This last term may give rise to an effect similar to the Aharanov-Bohm effect. It is to be considered that all extra terms will vanish if the space-time used is torsion-less.en_US
dc.description.sponsorshipWorld Scientific Publishing Companyen_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=4700152702&tip=sid&clean=0
dc.identifier.citation[1] Wanas, M.I., Melek, M. and Kahil, M.E.(1995) Astrophys. Space Sci.,228, 273. ; gr-qc/0207113. [2] Wanas, M.I.(1998) Astrophys. Space Sci., 258, 237 ; gr-qc/9904019. [3] Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Grav. Cosmol., 6 , 319. [4] Wanas, M.I., Melek, M. and Kahil, M.E. (2002) Proc. MG IX, part B, p.1100, Eds. V.G. Gurzadyan et al. (World Scientific Pub.); gr-qc/0306086. [5] Adler, R. Bazin, M. and Schiffer, M. (1975) ”Introduction to General Relativity”, McGraw Hill. [6] Eisenhart, L.P. (1926) ”Riemannian Geometry”, Princeton Univ. Press. [7] Bazanski, S.I. (1989) J. Math. Phys., 30, 1018. [8] Wanas, M.I. and Kahil, M.E.(1999) Gen. Rel. Grav., 31, 1921. ; gr-qc/9912007 10 [9] Mikhail, F.I. and Wanas, M.I. (1977) Proc. Roy. Soc. Lond. A 356, 471. [10] Wanas, M.I. (2001) Stud. Cercet. S¸tiint¸. Ser. Mat. Univ. Bac˘au 10, 297; gr-qc/0209050 [11] Wanas, M.I. (2000) Turk. J. Phys., 24, 473 ; gr-qc/0010099. [12] Straumann, N. (1984) ”General Relativity and Relativistic Astrophysics”, Springer-Verlag. [13] Wanas, M.I. (2003) Algebras, Groups and Geometries, 20, 345a. [14] Aharanov, Y. and Bohm, D. (1959) Phys. Rev. 115, 485. [15] Peshkin, M. (1981) Physics Reports, 6, 375.en_US
dc.identifier.urihttps://arxiv.org/pdf/gr-qc/0408029.pdf
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Companyen_US
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physics;Volume: 2 Issue: 6 Pages: 1017-1027
dc.subjectUniversity of Path equationsen_US
dc.titleA NEW CLASS OF PATH EQUATIONS IN AP-GEOMETRYen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description:
Faculty Of Engineering Research Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
51 B
Format:
Item-specific license agreed upon to submission
Description: