On shifted Jacobi spectral approximations for solving fractional differential equations

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorDoha, E. H
dc.contributor.authorBhrawy, AH
dc.contributor.authorBaleanu, D
dc.contributor.authorEzz-Eldien, S. S.
dc.date.accessioned2019-11-11T10:41:57Z
dc.date.available2019-11-11T10:41:57Z
dc.date.issued2013
dc.descriptionAccession Number: WOS:000318051700014en_US
dc.description.abstractIn this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value. problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. (C) 2013 Elsevier Inc. All rights reserveden_US
dc.description.sponsorshipELSEVIER SCIENCEen_US
dc.identifier.citationCited References in Web of Science Core Collection: 49en_US
dc.identifier.doihttps://doi.org/10.1016/j.amc.2013.01.051
dc.identifier.issn0096-3003
dc.identifier.otherhttps://doi.org/10.1016/j.amc.2013.01.051
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S009630031300091X
dc.language.isoenen_US
dc.publisherELSEVIER SCIENCE INCen_US
dc.relation.ispartofseriesAPPLIED MATHEMATICS AND COMPUTATION;Volume: 219 Issue: 15 Pages: 8042-8056
dc.relation.urihttps://cutt.ly/yeICEwH
dc.subjectUniversity for Multi-term fractional differential equationsen_US
dc.subjectNonlinear fractional initial value problemsen_US
dc.subjectSpectral methodsen_US
dc.subjectShifted Jacobi polynomialsen_US
dc.subjectJacobi-Gauss-Lobatto quadratureen_US
dc.subjectCaputo derivativeen_US
dc.titleOn shifted Jacobi spectral approximations for solving fractional differential equationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: