The potential protective effect of physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression
dc.Affiliation | October University for modern sciences and Arts (MSA) | |
dc.contributor.author | Al-Olayan E.M. | |
dc.contributor.author | El-Khadragy M.F. | |
dc.contributor.author | Aref A.M. | |
dc.contributor.author | Othman M.S. | |
dc.contributor.author | Kassab R.B. | |
dc.contributor.author | Abdel Moneim A.E. | |
dc.contributor.other | Zoology Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | King Saud University | |
dc.contributor.other | Riyadh 11451 | |
dc.contributor.other | Saudi Arabia; Zoology and Entomology Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Helwan University | |
dc.contributor.other | Cairo 11795 | |
dc.contributor.other | Egypt; Biological Science Department | |
dc.contributor.other | Faculty of Dentistry | |
dc.contributor.other | Modern Sciences and Arts (MSA) University | |
dc.contributor.other | Giza 12111 | |
dc.contributor.other | Egypt; Biochemistry and Molecular Biology Department | |
dc.contributor.other | Faculty of Biotechnology | |
dc.contributor.other | Modern Sciences and Arts (MSA) University | |
dc.contributor.other | Giza 12111 | |
dc.contributor.other | Egypt; Experimental Biology Department | |
dc.contributor.other | Faculty of Science | |
dc.contributor.other | Masaryk University | |
dc.contributor.other | 62500 Brno | |
dc.contributor.other | Czech Republic; Biochemistry and Molecular Biology Department | |
dc.contributor.other | Asturias Institute of Biotechnology | |
dc.contributor.other | University of Oviedo | |
dc.contributor.other | 33006 Oviedo | |
dc.contributor.other | Spain | |
dc.date.accessioned | 2020-01-09T20:42:19Z | |
dc.date.available | 2020-01-09T20:42:19Z | |
dc.date.issued | 2014 | |
dc.description | Scopus | |
dc.description | MSA Google Scholar | |
dc.description.abstract | The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway. � 2014 Ebtisam M. Al-Olayan et al. | en_US |
dc.description.uri | https://www.scimagojr.com/journalsearch.php?q=19700175026&tip=sid&clean=0 | |
dc.identifier.doi | https://doi.org/10.1155/2014/381413 | |
dc.identifier.doi | PubMed ID : 24876910 | |
dc.identifier.issn | 19420900 | |
dc.identifier.other | https://doi.org/10.1155/2014/381413 | |
dc.identifier.other | PubMed ID : 24876910 | |
dc.identifier.uri | https://t.ly/LXXGm | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Ltd. | |
dc.publisher | Landes Bioscience | en_US |
dc.relation.ispartofseries | Oxidative Medicine and Cellular Longevity | |
dc.relation.ispartofseries | 2014 | |
dc.subject | October University for Modern Sciences and Arts | |
dc.subject | University of Modern Sciences and Arts | |
dc.subject | MSA University | |
dc.subject | جامعة أكتوبر للعلوم الحديثة والآداب | |
dc.subject | Carbon tetrachloride | en_US |
dc.subject | Flavonoids | en_US |
dc.subject | Nitric oxide | en_US |
dc.subject | Oxygen | en_US |
dc.subject | Peptides | en_US |
dc.subject | Plants (botany) | en_US |
dc.subject | Restoration | en_US |
dc.subject | Active constituents | en_US |
dc.subject | Glutathione contents | en_US |
dc.subject | Glutathione peroxidase | en_US |
dc.subject | Glutathione reductase | en_US |
dc.subject | Glutathione-S-transferase | en_US |
dc.subject | Hepatoprotective effects | en_US |
dc.subject | Protective effects | en_US |
dc.subject | Super oxide dismutase | en_US |
dc.subject | Rats | en_US |
dc.subject | alanine aminotransferase | en_US |
dc.subject | antioxidant | en_US |
dc.subject | aspartate aminotransferase | en_US |
dc.subject | carbon tetrachloride | en_US |
dc.subject | catalase | en_US |
dc.subject | gelatinase B | en_US |
dc.subject | glutathione | en_US |
dc.subject | glutathione peroxidase | en_US |
dc.subject | glutathione reductase | en_US |
dc.subject | glutathione transferase | en_US |
dc.subject | liver protective agent | en_US |
dc.subject | malonaldehyde | en_US |
dc.subject | nitric oxide | en_US |
dc.subject | Physalis peruviana extract | en_US |
dc.subject | plant extract | en_US |
dc.subject | quercetin | en_US |
dc.subject | superoxide dismutase | en_US |
dc.subject | unclassified drug | en_US |
dc.subject | gelatinase B | en_US |
dc.subject | malonaldehyde | en_US |
dc.subject | nitric oxide | en_US |
dc.subject | oxidoreductase | en_US |
dc.subject | plant extract | en_US |
dc.subject | protective agent | en_US |
dc.subject | alanine aminotransferase blood level | en_US |
dc.subject | animal experiment | en_US |
dc.subject | animal model | en_US |
dc.subject | animal tissue | en_US |
dc.subject | antioxidant activity | en_US |
dc.subject | article | en_US |
dc.subject | aspartate aminotransferase blood level | en_US |
dc.subject | carbon tetrachloride-induced liver fibrosis | en_US |
dc.subject | controlled study | en_US |
dc.subject | down regulation | en_US |
dc.subject | drug effect | en_US |
dc.subject | enzyme activity | en_US |
dc.subject | enzyme repression | en_US |
dc.subject | fruit juice | en_US |
dc.subject | immunohistochemistry | en_US |
dc.subject | in vitro study | en_US |
dc.subject | lipid peroxidation | en_US |
dc.subject | liver function test | en_US |
dc.subject | liver homogenate | en_US |
dc.subject | liver protection | en_US |
dc.subject | male | en_US |
dc.subject | mass fragmentography | en_US |
dc.subject | medicinal plant | en_US |
dc.subject | nonhuman | en_US |
dc.subject | oxidative stress | en_US |
dc.subject | physalis peruviana | en_US |
dc.subject | protein expression | en_US |
dc.subject | rat | en_US |
dc.subject | real time polymerase chain reaction | en_US |
dc.subject | animal | en_US |
dc.subject | blood | en_US |
dc.subject | chemistry | en_US |
dc.subject | drug effects | en_US |
dc.subject | Drug-Induced Liver Injury | en_US |
dc.subject | liver | en_US |
dc.subject | metabolism | en_US |
dc.subject | pathology | en_US |
dc.subject | Physalis | en_US |
dc.subject | toxicity | en_US |
dc.subject | Wistar rat | en_US |
dc.subject | Animals | en_US |
dc.subject | Carbon Tetrachloride | en_US |
dc.subject | Down-Regulation | en_US |
dc.subject | Drug-Induced Liver Injury | en_US |
dc.subject | Liver | en_US |
dc.subject | Liver Function Tests | en_US |
dc.subject | Male | en_US |
dc.subject | Malondialdehyde | en_US |
dc.subject | Matrix Metalloproteinase 9 | en_US |
dc.subject | Nitric Oxide | en_US |
dc.subject | Oxidative Stress | en_US |
dc.subject | Oxidoreductases | en_US |
dc.subject | Physalis | en_US |
dc.subject | Plant Extracts | en_US |
dc.subject | Protective Agents | en_US |
dc.subject | Rats | en_US |
dc.subject | Rats, Wistar | en_US |
dc.title | The potential protective effect of physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression | en_US |
dc.type | Article | en_US |
dcterms.isReferencedBy | Tacke, F., Luedde, T., Trautwein, C., Inflammatory pathways in liver homeostasis and liver injury (2009) Clinical Reviews in Allergy and Immunology, 36 (1), pp. 4-12. , 2-s2.0-61949261267 10.1007/s12016-008-8091-0; Vitaglione, P., Morisco, F., Caporaso, N., Fogliano, V., Dietary antioxidant compounds and liver health (2004) Critical Reviews in Food Science and Nutrition, 44 (7-8), pp. 575-586. , DOI 10.1080/10408690490911701; Hsu, Y.-W., Tsai, C.-F., Chang, W.-H., Ho, Y.-C., Chen, W.-K., Lu, F.-J., Protective effects of Dunaliella salina - A carotenoids-rich alga, against carbon tetrachloride-induced hepatotoxicity in mice (2008) Food and Chemical Toxicology, 46 (10), pp. 3311-3317. , 2-s2.0-52949113803 10.1016/j.fct.2008.07.027; Pohl, L.R., Schulick, R.D., Highet, R.J., George, J.W., Reductive-oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450 (1984) Molecular Pharmacology, 25 (2), pp. 318-321; Kurata, M., Suzuki, M., Agar, N.S., Antioxidant systems and erythrocyte life-span in mammals (1993) Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 106 (3), pp. 477-487. , DOI 10.1016/0305-0491(93)90121-K; Ghatak, S., Biswas, A., Dhali, G.K., Chowdhury, A., Boyer, J.L., Santra, A., Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice (2011) Toxicology and Applied Pharmacology, 251 (1), pp. 59-69. , 2-s2.0-78751638450 10.1016/j.taap.2010.11.016; Fu, Y., Zheng, S., Lin, J., Ryerse, J., Chen, A., Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation (2008) Molecular Pharmacology, 73 (2), pp. 399-409. , http://molpharm.aspetjournals.org/cgi/reprint/73/2/399, DOI 10.1124/mol.107.039818; Deng, G., Wang, J., Zhang, Q., He, H., Wu, F., Feng, T., Zhou, J., Hattori, M., Hepatoprotective effects of phloridzin on hepatic fibrosis induced by carbon tetrachloride against oxidative stress-triggered damage and fibrosis in rats (2012) Biological & Pharmaceutical Bulletin, 35 (7), pp. 1118-1125. , 10.1248/bpb.b12-00057; Othman, M.S., Nada, A., Zaki, H.S., Abdel Moneim, A.E., Effect of Physalis Peruviana L. on Cadmium-induced Testicular Toxicity in Rats, , Biological Trace Element Research, 2014 10.1007/s12011-014-9955-1; Othman, M.S., Safwat, G., Aboulkhair, M., Abdel Moneim, A.E., The Potential Effect of Berberine in Mercury-induced Hepatorenal Toxicity in Albino Rats, , Food and Chemical Toxicology, 2014 10.1016/j.fct.2014.04.012; Fang, S.-T., Liu, J.-K., Li, B., Ten new withanolides from Physalis peruviana (2012) Steroids, 77 (1-2), pp. 36-44. , 2-s2.0-83655201231 10.1016/j.steroids.2011.09.011; Wang, I.-K., Lin-Shiau, S.-Y., Lin, J.-K., Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells (1999) European Journal of Cancer, 35 (10), pp. 1517-1525. , DOI 10.1016/S0959-8049(99)00168-9, PII S0959804999001689; Nishikimi, M., Appaji Rao, N., Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen (1972) Biochemical and Biophysical Research Communications, 46 (2), pp. 849-854. , 2-s2.0-0015530358; Abdel Moneim, A.E., The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat (2013) CNS Neurological Disorders Drug Targets, 12 (6), pp. 830-841; Sohn, D.H., Yun, Y.-P., Park, K.S., Veech, R.L., Song, B.J., Post-translational reduction of cytochrome P450IIE by CCl4, its substrate (1991) Biochemical and Biophysical Research Communications, 179 (1), pp. 449-454. , 2-s2.0-0026001381; Reitman, S., Frankel, S., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases (1957) American Journal of Clinical Pathology, 28 (1), pp. 56-63. , 2-s2.0-66349129125; Szasz, G., A kinetic photometric method for serum gamma-glutamyl transpeptidase (1969) Clinical Chemistry, 15 (2), pp. 124-136. , 2-s2.0-0014467815; Belfield, A., Goldberg, D.M., Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine (1971) Enzyme, 12 (5), pp. 561-573. , 2-s2.0-0015195627; Garber, C.C., Jendrassik-Grof analysis for total and direct bilirubin in serum with a centrifugal analyzer (1981) Clinical Chemistry, 27 (8), pp. 1410-1416; Ohkawa, H., Ohishi, N., Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction (1979) Analytical Biochemistry, 95 (2), pp. 351-358. , DOI 10.1016/0003-2697(79)90738-3; Green, L.C., Wagner, D.A., Glogowski, J., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Analytical Biochemistry, 126 (1), pp. 131-138. , DOI 10.1016/0003-2697(82)90118-X; Ellman, G.L., Tissue sulfhydryl groups (1959) Archives of Biochemistry and Biophysics, 82 (1), pp. 70-77. , 2-s2.0-3042934967; Aebi, H., Catalase in vitro (1984) Methods in Enzymology, 105, pp. 121-126. , 2-s2.0-0021318441 10.1016/S0076-6879(84)05016-3; Paglia, D.E., Valentine, W.N., Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase (1967) The Journal of Laboratory and Clinical Medicine, 70 (1), pp. 158-169. , 2-s2.0-0014108436; Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation (1974) The Journal of Biological Chemistry, 249 (22), pp. 7130-7139. , 2-s2.0-0016275313; Factor, V.M., Kiss, A., Woitach, J.T., Wirth, P.J., Thorgeirsson, S.S., Disruption of redox homeostasis in the transforming growth factor-?/c- myc transgenic mouse model of accelerated hepatocarcinogenesis (1998) Journal of Biological Chemistry, 273 (25), pp. 15846-15853. , DOI 10.1074/jbc.273.25.15846; Abdel Moneim, A.E., El-Deib, K.M., The Possible protective effects of Physalis peruviana on carbon tetrachloride-induced nephrotoxicity in male albino rats (2012) Life Science Journal, 9 (3), pp. 1038-1052; Yun, J.-W., Kim, C.-W., Bae, I.-H., Park, Y.-H., Chung, J.-H., Lim, K.-M., Kang, K.-S., Determination of the key innate genes related to individual variation in carbon tetrachloride-induced hepatotoxicity using a pre-biopsy procedure (2009) Toxicology and Applied Pharmacology, 239 (1), pp. 55-63. , 2-s2.0-67650684954 10.1016/j.taap.2009.05.018; Adesanoye, O.A., Farombi, E.O., Hepatoprotective effects of Vernonia amygdalina (astereaceae) in rats treated with carbon tetrachloride (2010) Experimental and Toxicologic Pathology, 62 (2), pp. 197-206. , 2-s2.0-75949103368 10.1016/j.etp.2009.05.008; Coballase-Urrutia, E., Pedraza-Chaverri, J., C�rdenas-Rodr�guez, N., Huerta-Gertrudis, B., Garc�a-Cruz, M.E., Ram�rez-Morales, A., S�nchez-Gonz�lez, D.J., Espinosa-Aguirre, J., Hepatoprotective effect of acetonic and methanolic extracts of Heterotheca inuloides against CCl4-induced toxicity in rats (2011) Experimental and Toxicologic Pathology, 63 (4), pp. 363-370. , 2-s2.0-79953756571 10.1016/j.etp.2010.02.012; Boll, M., Weber, L.W.D., Becker, E., Stampfl, A., Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites (2001) Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 56 (7-8), pp. 649-659; Ganie, S.A., Zargar, B.A., Masood, A., Zargar, M.A., Hepatoprotective and antioxidant activity of rhizome of Podophyllum hexandrum against carbon tetra chloride induced hepatotoxicity in rats (2013) Biomedical and Environmental Sciences, 26 (3), pp. 209-221; Breikaa, R.M., Algandaby, M.M., El-Demerdash, E., Abdel-Naim, A.B., Multimechanistic antifibrotic effect of biochanin a in rats: Implications of proinflammatory and profibrogenic mediators (2013) PLoS ONE, 8 (7). , e69276 10.1371/journal.pone.0069276; Ramadan, M.F., Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview (2011) Food Research International, 44 (7), pp. 1830-1836. , 2-s2.0-79959993835 10.1016/j.foodres.2010.12.042; Chang, J.C., Lin, C.C., Wu, S.J., Lin, D.L., Wang, S.S., Miaw, C.L., Ng, L.T., Antioxidative and hepatoprotective effects of Physalis peruviana extract against acetaminophen-induced liver injury in rats (2008) Pharmaceutical Biology, 46 (10-11), pp. 724-731. , 2-s2.0-57649216327 10.1080/13880200802215768; Arun, M., Asha, V.V., Preliminary studies on antihepatotoxic effect of Physalis peruviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats (2007) Journal of Ethnopharmacology, 111 (1), pp. 110-114. , DOI 10.1016/j.jep.2006.10.038, PII S0378874106005769; El-Gengaihi, S.E., Hassan, E.E., Hamed, M.A., Zahran, H.G., Mohammed, M.A., Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent (2013) Journal of Dietary Supplements, 10 (1), pp. 39-53. , 10.3109/19390211.2012.760509; Wu, S.-J., Ng, L.-T., Lin, D.-L., Huang, S.-N., Wang, S.-S., Lin, C.-C., Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway (2004) Cancer Letters, 215 (2), pp. 199-208. , DOI 10.1016/j.canlet.2004.05.001, PII S0304383504003477; Wu, S.J., Tsai, J.Y., Chang, S.P., Lin, D.L., Wang, S.S., Huang, S.N., Ng, L.T., Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana (2006) Journal of Ethnopharmacology, 108 (3), pp. 407-413. , DOI 10.1016/j.jep.2006.05.027, PII S0378874106002893; Mandal, A.K., Das, N., Sugar coated liposomal flavonoid: A unique formulation in combating carbontetrachloride induced hepatic oxidative damage (2005) Journal of Drug Targeting, 13 (5), pp. 305-315. , DOI 10.1080/10611860500230278; Janbaz, K.H., Saeed, S.A., Gilani, A.H., Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents (2004) Phytomedicine, 11 (5), pp. 424-430. , DOI 10.1016/j.phymed.2003.05.002; Tatiya, A.U., Surana, S.J., Sutar, M.P., Gamit, N.H., Hepatoprotective effect of poly herbal formulation against various hepatotoxic agents in rats (2012) Pharmacognosy Research, 4 (1), pp. 50-56; Kim, J., Chehade, J., Pinnas, J.L., Mooradian, A.D., Effect of select antioxidants on malondialdehyde modification of proteins (2000) Nutrition, 16 (11-12), pp. 1079-1081. , 2-s2.0-0033676092 10.1016/S0899-9007(00)00446-9; Leung, T.-M., Fung, M.-L., Liong, E.C., Lau, T.Y.H., Nanji, A.A., Tipoe, G.L., Role of nitric oxide in the regulation of fibrogenic factors in experimental liver fibrosis in mice (2011) Histology and Histopathology, 26 (2), pp. 201-211. , 2-s2.0-78651305270; Zhu, W., Fung, P.C.W., The roles played by crucial free radicals like lipid free radicals, nitric oxide, and enzymes NOS and NADPH in CCl4-induced acute liver injury of mice (2000) Free Radical Biology and Medicine, 29 (9), pp. 870-880. , 2-s2.0-0034333125 10.1016/S0891-5849(00)00396-8; El-Gengaihi, S.E., Hamed, M.A., Khalaf-Allah, R., Mohammed, M.A., Golden berry juice attenuates the severity of hepatorenal injury (2013) Journal of Dietary Supplements, 10 (4), pp. 357-369; Halliwell, B., Gutteridge, J.M.C., Cellular responses to oxidative stress: Adaptation, damage, repair, senescence and death (2007) Free Radicals in Biology and Medicine, pp. 187-267. , Oxford, UK Oxford University Press; Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., Free radicals and antioxidants in normal physiological functions and human disease (2007) International Journal of Biochemistry and Cell Biology, 39 (1), pp. 44-84. , DOI 10.1016/j.biocel.2006.07.001, PII S1357272506002196; Vassiliadis, E., Larsen, D.V., Clausen, R.E., Veidal, S.S., Barascuk, N., Larsen, L., Simonsen, H., Karsdal, M.A., Measurement of co3-610, a potential liver biomarker derived from matrix metalloproteinase-9 degradation of collagen type iii, in a rat model of reversible carbon-tetrachloride-induced fibrosis (2011) Biomarker Insights, 6, pp. 49-58. , 2-s2.0-79958242395 10.4137/BMI.S6347; Kahraman, A., Bronk, S.F., Cazanave, S., Werneburg, N.W., Mott, J.L., Contreras, P.C., Gores, G.J., Matrix metalloproteinase inhibitor, CTS-1027, attenuates liver injury and fibrosis in the bile duct-ligated mouse (2009) Hepatology Research, 39 (8), pp. 805-813. , 2-s2.0-68349128422 10.1111/j.1872-034X.2009.00541.x; Hollman, P.C.H., Van Trijp, J.M.P., Mengelers, M.J.B., De Vries, J.H.M., Katan, M.B., Bioavailability of the dietary antioxidant flavonol quercetin in man (1997) Cancer Letters, 114 (1-2), pp. 139-140. , DOI 10.1016/S0304-3835(97)04644-2, PII S0304383597046442; Boots, A.W., Wilms, L.C., Swennen, E.L.R., Kleinjans, J.C.S., Bast, A., Haenen, G.R.M.M., In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers (2008) Nutrition, 24 (7-8), pp. 703-710. , DOI 10.1016/j.nut.2008.03.023, PII S089990070800172X; Tatsimo, S.J.N., Tamokou, J.D.D.D., Havyarimana, L., Csupor, D., Forgo, P., Judit, H., Kuiate, J.R., Pierre, T., Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum (2012) BMC Research Notes, 5, p. 158. , 2-s2.0-84858415983 10.1186/1756-0500-5-158 | |
dcterms.source | Scopus |