A Non-Integer Variable Order Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection with Time Delay

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorArafa A.A.M.
dc.contributor.authorKhalil M.
dc.contributor.authorSayed A.
dc.contributor.otherDepartment of Mathematics and Computer Science
dc.contributor.otherFaculty of Science
dc.contributor.otherPort Said University
dc.contributor.otherPort
dc.contributor.otherEgypt; Department of Mathematics
dc.contributor.otherFaculty of Engineering
dc.contributor.otherOctober University for Modern Sciences and Arts (MSA)
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:40:43Z
dc.date.available2020-01-09T20:40:43Z
dc.date.issued2019
dc.descriptionScopus
dc.descriptionMSA Google Scholar
dc.description.abstractThe purpose of this paper is to propose a variable fractional-order model with a constant time delay of the coinfection of HIV/AIDS and malaria. The proposed model describes the interaction between HIV/AIDS and malaria. This model is presented by using variable fractional-order derivative which is an extension of the constant fractional-order derivative to explain a certain pattern in the development of infection of several patients. The presented model has been solved numerically via the predictor-corrector scheme. The local and global stability conditions of the disease-free equilibrium are investigated. Also, numerical simulations are presented for different variable fractional-order derivatives in Caputo sense. � 2019 A. A. M. Arafa et al.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=25823&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1155/2019/4291017
dc.identifier.doiPubMed ID :
dc.identifier.issn10762787
dc.identifier.otherhttps://doi.org/10.1155/2019/4291017
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/WepG9
dc.language.isoEnglishen_US
dc.publisherHindawi Limiteden_US
dc.relation.ispartofseriesComplexity
dc.relation.ispartofseries2019
dc.subjectEpidemiologyen_US
dc.subjectTime delayen_US
dc.subjectTiming circuitsen_US
dc.subjectVirusesen_US
dc.subjectConstant time delaysen_US
dc.subjectDisease-free equilibriumen_US
dc.subjectFractional order derivativesen_US
dc.subjectFractional order modelsen_US
dc.subjectHuman immunodeficiency virusen_US
dc.subjectInteger variablesen_US
dc.subjectLocal and global stabilitiesen_US
dc.subjectPredictor-corrector schemesen_US
dc.subjectDiseasesen_US
dc.titleA Non-Integer Variable Order Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection with Time Delayen_US
dc.typeArticleen_US
dcterms.isReferencedByHochman, S., Kim, K., The impact of HIV and malaria coinfection: What is known and suggested venues for further study (2009) Interdisciplinary Perspectives on Infectious Diseases, 2009, 8p; (2017) World Health Organization: HIV/AIDS, , http://www.who.int/mediacentre/factsheets/fs360/en/; (2017) World Health Organization: Malaria, , http://www.who.int/mediacentre/factsheets/fs094/en/; AboutHIV/AIDS, , https://www.cdc.gov/hiv/basics/whatishiv.html; Idro, R., Marsh, K., John, C.C., Newton, C.R.J., Cerebral malaria: Mechanisms of brain injury and strategies for improved neurocognitive outcome (2010) Pediatric Research, 68 (4), pp. 267-274; World Health Organization: Malaria in HIV/AIDS Patients, , http://www.who.int/malaria/areas/highriskgroups/hivaidspatients/en/; Tay, S.C.K., Badu, K., Mensah, A.A., The prevalence of malaria among HIV seropositive individuals and the impact of the co-infection on their hemoglobin levels (2015) Annals of Clinical Microbiology and Antimicrobials, 14 (1), p. 10; Baradaji, A., Sigauquw, B., Sanz, S., Impact of malaria at the end of pregnancy on infant mortality and morbidity (2011) Journal of Infectious Diseases, 203 (5), pp. 691-699; Brown, G.V., Progress in the development ofmalaria vaccines: Context and constraints (1999) Parassitologia, 41 (1-3), pp. 429-432; Miller, L.H., David, P.H., Hadley, T.J., Freeman, R.R., Perspectives for malaria vaccination (1984) Philosophical Transactions of the Royal Society B: Biological Sciences, 84 (2), pp. 99-115; Kazmin, D., Nakaya, H.I., Lee, E.K., Systems analysis of protective immune responses to RTS, S malaria vaccination in humans (2017) Proceedings of the National Acadamy of Sciences of the United States of America, 114 (9), pp. 2425-2430; Arafa, A.A.M., Rida, S.Z., Khalil, M., A fractional-order model of HIV infection: Numerical solution and comparisons with data of patients (2014) International Journal of Biomathematics, 7 (4); Arafa, A.A., Rida, S.Z., Khalil, M., A fractional-order model of HIV infection with drug therapy effect (2014) Journal of the EgyptianMathematical Society, 22 (3), pp. 538-543; Arafa, A.A., Rida, S.Z., Khalil, M., The effect of antiviral drug treatment of human immunodeficiency (2013) Applied Mathematical Modelling, 37, pp. 2189-2196; Arafa, A.A.M., Rida, S.Z., Khalil, M., Fractionalmodeling dynamics of HIV and CD4+ T-cells during primary infection (2012) Nonlinear Biomedical Physics, 6, pp. 1-7; Carvalho, A.R., Pinto, C.M., Baleanu, D., HIV/HCV coinfection model: A fractional-order perspective for the effect of the HIV viral load (2018) Advances in Difference Equations, 2018 (1), p. 2; Pinto, C.M.A., Carvalho, A.R., A latency fractional order model for HIV dynamics (2017) Journal of Computational and AppliedMathematics, 312, pp. 240-256; Pinto, C.M.A., Machado, J.A.T., Fractional model for malaria transmission under control strategies (2013) Computers & Mathematics with Applications, 66 (5), pp. 908-916; Zafar, Z.U.A., Rehan, K., Mushtaq, M., Fractional-order scheme for bovine babesiosis disease and tick populations (2017) Advances in Difference Equations, 2017 (1), p. 86; Zafar, Z.U.A., Rehan, K., Mushtaq, M., HIV/AIDSepidemic fractional-order model (2017) Journal of Difference Equations and Applications, 23 (7), pp. 1298-1315; Zafar, Z.U.A., Rehan, K., Mushtaq, M., Rafiq, M., Numerical treatment for nonlinear Brusselator chemicalmodel (2017) Journal of Difference Equations AndApplications, 23 (3), pp. 521-538; Zafar, Z.U.A., Mushtaq, M., Rehan, K., A non-integer order dengue internal transmission model (2018) Advances in Difference Equations, 2018 (1), p. 23; Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Fractional diffusion in inhomogeneous media (2005) Journal of Physics A: Mathematical and General, 38 (42), pp. L679-L684; Chechkin, A.V., Gonchar, V.Y., Gorenflo, R., Korabel, N., Sokolov, I.M., Generalized fractional diffusion equations for accelerating subdiffusion and truncated Levy flights (2008) Physical Review E: Statistical, Nonlinear, and so Matter Physics, 78 (2); Petrovic, L.M., Spasic, D.T., Atanackovic, T.M., On a mathematical model of a human root dentin (2005) DentalMaterials, 21 (2), pp. 125-128; Sun, H.G., Chen, W., Wei, H., Chen, Y.Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems (2011) European Physical Journal Special Topics, 193 (1), pp. 185-192; Xu, Y., He, Z., Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations (2013) AppliedMathematics and Computation, 43 (1-2), pp. 295-306; Saeed, U., Rehman, M.U., Hermite wavelet method for fractional delay differential equations (2014) Journal of Differential Equations, 2014, pp. 1-8; Moghaddamand, B.P., Mostaghim, S.Z., AMatrix scheme based on fractional finite difference method for solving fractional delay differential equations with boundary condition (2015) New Trends in Mathematical Sciences, 3 (2), pp. 13-23; Daftardar-Gejji, V., Sukale, Y., Bhalekar, S., Solving fractional delay differential equations: A new approach (2015) Fractional Calculus and Applied Analysis, 18 (2), pp. 400-418; Moghaddam, B.P., Yaghoobi, S., Machado, J.T., An extended predictor-corrector algorithm for variable-order fractional delay differential equations (2016) Journal of Computational and Nonlinear Dynamics, 11 (6); Carvalho, A.R., Pinto, C.M.A., A delay fractional order model for the co-infection of malaria and HIV/AIDS (2017) International Journal OfDynamics and Control, 5 (1), pp. 168-186; Ahmed, E., Elgazzar, A.S., On fractional order differential equations model for nonlocal epidemics (2007) Physica A: Statistical Mechanics and Its Applications, 379 (2), pp. 607-614; El-Sayed, A.M.A., On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications (2010) Alexandria Journal OfMathematics, 1 (1), pp. 1-10; Murray, R.M., (2017) A Mathematical Introduction to Robotic Manipulation, , CRC Press; Asl, F.M., Ulsoy, A.G., Analysis of a system of linear delay differential equations (2003) Journal of Dynamic Systems, Measurement, and Control, 125 (2), pp. 215-223; Chiyaka, C., Tchuenche, J.M., Garira, W., Dube, S., A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria (2008) Applied Mathematics and Computation, 195 (2), pp. 641-662; Dietz, K., Molineaux, L., Thomas, A., A malaria model tested in the African Savannah (1974) Bulletin of the World Health Organization, 50 (3-4), pp. 347-357; Mukandavire, Z., Gumel, A.B., Garira, W., Tchuenche, J.M., Mathematical analysis of a model for HIV-malaria coinfection (2009) Mathematical Biosciences and Engineering, 6 (2), pp. 333-362; Chitnis, N., Cushing, J.M., Hyman, J.M., Bifurcation analysis of a mathematical model for malaria transmission (2006) SIAM Journal on Applied Mathematics, 67 (1), pp. 24-45; Bowman, C., Gumel, A.B., Driessche Den P.Van, Wu, J., Zhu, H., Amathematical model for assessing control strategies against West Nile virus (2005) Bulletin of Mathematical Biology, 67 (5), pp. 1107-1133; Detinova, T.S., (1962) Age Grouping Methods in Diptera of Medical Importance, with Special Reference to Some Vectors of Malaria Vol. 48 of Monographs Series; Wu, C., Jiang, Z., Global stability for the disease free equilibrium of a delayed model for malaria transmission (2012) International Journal OfMathematical Analysis, 6 (37-40), pp. 1877-1881
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
avatar_scholar_128.png
Size:
2.73 KB
Format:
Portable Network Graphics
Description:
Loading...
Thumbnail Image
Name:
4291017.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Description: