Comparative study of clustering medical images

dc.AffiliationOctober University for modern sciences and Arts (MSA)
dc.contributor.authorFayez M.
dc.contributor.authorSafwat S.
dc.contributor.authorHassanein E.
dc.contributor.otherFaculty of Computer Sience
dc.contributor.otherOctober Universityfor Modern Scienc and Arts
dc.contributor.otherGiza
dc.contributor.otherEgypt; Faculty of Computers and Information
dc.contributor.otherCairo University
dc.contributor.otherGiza
dc.contributor.otherEgypt
dc.date.accessioned2020-01-09T20:41:35Z
dc.date.available2020-01-09T20:41:35Z
dc.date.issued2016
dc.descriptionScopus
dc.description.abstractDue to the fast growing of the images data repositories, there is a big challenge to organize these repositories and make them easy to search and mine to get knowledge. Image clustering goal is to link each image in an image database with a class label, so similar images are grouped and have the same class label and which are different from other images in a database. Image clustering organize image repositories to groups or clusters and this is a basic step in many applications as content based image retrieval (CBIR), image classification, powerful search engines, browsing images and segmentation of images. In this paper, we proposed two new methods for clustering medical images. The two proposed methods are implemented, tested on medical images data set and the results obtained from the two proposed methods are compared. In the first proposed method, GLCM and Haralick's statistical measures are used for extracting texture features from the images and k-means clustering is applied to cluster the extracted feature vectors. In the second proposed method, 2D wavelet transform is used to extract features from the images, feature selection is applied and finally, K-means clustering algorithm is applied to cluster feature vectors. � 2016 IEEE.en_US
dc.description.urihttps://www.scimagojr.com/journalsearch.php?q=21100780803&tip=sid&clean=0
dc.identifier.doihttps://doi.org/10.1109/SAI.2016.7556000
dc.identifier.doiPubMed ID :
dc.identifier.isbn9.78E+12
dc.identifier.otherhttps://doi.org/10.1109/SAI.2016.7556000
dc.identifier.otherPubMed ID :
dc.identifier.urihttps://t.ly/b298G
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofseriesProceedings of 2016 SAI Computing Conference, SAI 2016
dc.subjectجامعة أكتوبر للعلوم الحديثة والآداب
dc.subjectMSA University
dc.subjectUniversity for Modern Sciences and Arts
dc.subjectOctober University for Modern Sciences and Arts
dc.subject2D wavelet transformen_US
dc.subjectClusteringen_US
dc.subjectFeature extractionen_US
dc.subjectFeature selectionen_US
dc.subjectGray Level Co-Occurrence matrix (GLCM)en_US
dc.subjectk-meansen_US
dc.subjectMedical imagesen_US
dc.subjectClustering algorithmsen_US
dc.subjectCobalt compoundsen_US
dc.subjectContent based retrievalen_US
dc.subjectFeature extractionen_US
dc.subjectImage classificationen_US
dc.subjectImage processingen_US
dc.subjectImage retrievalen_US
dc.subjectImage segmentationen_US
dc.subjectMedical imagingen_US
dc.subjectWavelet transformsen_US
dc.subject2-D wavelet transformen_US
dc.subjectClusteringen_US
dc.subjectContent-Based Image Retrievalen_US
dc.subjectGray level co occurrence matrix(GLCM)en_US
dc.subjectK-meansen_US
dc.subjectK-Means clustering algorithmen_US
dc.subjectMedical images datumen_US
dc.subjectStatistical measuresen_US
dc.subjectSearch enginesen_US
dc.titleComparative study of clustering medical imagesen_US
dc.typeConference Paperen_US
dcterms.isReferencedByImam Rahmani, K., Pal, N., Arora, K., (2014) Clustering of Image Data Using K-Means and Fuzzy K-Means; Tan, P.-N., Steinbach, M., Kumar, V., (2005) Introduction to Data Mining; Deng Cai, Z., He, X., Wei-Ying, M., Lin, X., (2004) Locality Preserving Clustering for Image Database; Goldberger, J., Greenspan, H., Gordon, S., Unsupervised Image Clustering Using the Information Bottleneck Method; Kumaran, N., Bhavani, R., (2014) Texture and Shape Content Based MRI Image Retrieval System; Enas, M.F.H., (2015) Medical Images Retrieval Using Clustering Technique; Kumaran, N., Bhavani, R., (2014) TEXTURE CONTENT BASED MRI IMAGE RETRIEVALUSING GABOR WAVELET and PROGRESSIVE RETRIEVAL STRATEGY; Ray, C., Sasmal, K., (2010) A New Approach for Clustering of X-ray Images; Anil Chandra, B., (2010) Medical Image Modality Classification Using Feature Weighted Clustering Approach; Ping Tian, D., (2013) A Review on Image Feature Extraction and Representation Techniques; Tripathi, G., (2014) Review on Color and Texture Feature Extraction Techniques; Baaziz, N., Abahmane, O., Missaoui, R., Texture Feature Extraction in the Spatial-frequency Domain for Content-based Image Retrieval; Ramamurthy, B., Chandran, K.R., (2012) Content Based Medical Image Retrieval with Texture Content Using Gray Level Co-occurrence Matrix and K-Means Clustering Algorithms; Liu, Y., Zhang, D., Lu, G., Ma, W.-Y., (2006) A Survey of Content-based Image Retrieval with High-level Semantics; Kim, W., (2009) Parallel Clustering Algorithms: Survey; Rokach, L., Maimon, O., (2005) DATA MINING and KNOWLEDGE DISCOVERY HANDBOOK; Jyoti Bora, D., Kumar Gupta, A., (2014) A Comparative Study between Fuzzy Clustering Algorithm and Hard Clustering Algorithm
dcterms.sourceScopus

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
avatar_scholar_256.png
Size:
6.31 KB
Format:
Portable Network Graphics
Description: